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Content of the lectures

• CASCI 

• MCSCF/CASSCF 

• MR Dynamical Correlation Approaches

Past

• Density Matrix Renormalisation Group

Present: “Sample” CI coefficients using an advanced optimisation algorithm

Road ahead: Beyond “classical quantum chemistry”

• Quantum Chemistry on Quantum Computers

• Concepts 



The Present …



Second example: the Cr2 puzzle resolved  

H. R. Larsson, H. Zhai, C. J. Umrigar, G. K.-L. Chan, JACS, 144, 15932 (2022)



Cr2 potential energy curse…

Short and weak bond with a narrow minimum around 1.68 Å & extended shelf at around 2.5 Å.  
—> Cr 4s and 3d AOs different in size, with the minimum corresponding mostly to 3d orbital interactions and 
the shelf to 4s orbital interactions. 



A unique bonding and its consequences
• Complex electronic structure arises from interplay of two types of electron correlation

• type I — “static correlation”: spin-coupling of the 12 valence electrons (3d + 4s shells)
energy-driven degeneracy

• type II — "spatial correlation / dynamic correlation”: need for a large basis to capture 
excitations involving non-valence orbitals

overlap-driven degeneracy

—> formation of 3d-3d bonds requires the 3p electrons to move out of the same spatial region 
by exciting to higher lying orbitals

• Challenge: 
“The problem is computationally challenging because both the static and dynamic 
correlation must be computed sufficiently well even for a qualitatively reasonable 
description.”



Computational approach I

• Static electron correlation: CAS(28e,76o)/cc-pVDZ-DK

• Heat-Bath CI (selective CI)

• DMRG (with huge bond dimension!)

• Dynamic electron correlation: CAS(12,12)/MRPT2

• PT2 correlation of 3s and 3p inner-valence shells

• all secondary shells considered

• Basis set: MRPT2 with cc-pvNZ-DK (N=2,3,4,5) with extrapolation to CBS limit



Computational approach II



New state-of-the-art



Thinking outside the box
Standard CI approach

Ψ⟩ = ∑
k1,k2,…,kL

ck1,k2,…,kL
k1⟩ ⊗ k2⟩ ⊗ … ⊗ kL⟩

• CI-type diagonalization for a preselected set of many-particle basis states 
 
 

• Could we do better or, say, something else? 



Thinking outside the box
Standard CI approach

Ψ⟩ = ∑
k1,k2,…,kL

ck1,k2,…,kL
k1⟩ ⊗ k2⟩ ⊗ … ⊗ kL⟩

• CI-type diagonalization for a preselected set of many-particle basis states 
 
 

• Could we do better or, say, something else? 
• select many-particle basis sets / configurations / etc. based on some energy/weighting criteria: 
-> selected CI approaches 
-> difference dedicated CI, 
-> many-body expansion FCI 
-> … 

• find “best” many-particle basis set based on correlations among orbitals -> DMRG



Thinking outside the box

• CI-type diagonalization for a preselected set of many-particle basis states 
 
 

• Determine CI coefficients from correlations among orbitals 

• Local space  of -th spatial orbital is of dimension : 
 
 

kl l d = 4

Standard CI approach

DMRG

Ψ⟩ = ∑
k1,k2,…,kL

ck1,k2,…,kL
k1⟩ ⊗ k2⟩ ⊗ … ⊗ kL⟩

Ψ⟩ = ∑
k1,k2,…,kL

ck1,k2,…,kL
k1⟩ ⊗ k2⟩ ⊗ … ⊗ kL⟩

kl = { ↑ ↓ ⟩ ↑ ⟩, ↓ ⟩, 0⟩}



From a CI wave function to Matrix Product States (MPS):
Optimising an MPS with the DMRG algorithm



Optimising an MPS wave function with the DMRG algorithm

• Optimisation algorithm 

• Parameters that determine DMRG accuracy

Very useful introductory reference:

U. Schollwöck, The density-matrix renormalization group in the age of
matrix product states, Annals of Physics, 326 (2011) 96–192.



Some reviews on about 20 years of DMRG in quantum chemistry 

• Ö. Legeza et al., Lect. Notes Phys., 739, 653 (2008) 

• G. K.-L. Chan et al., Prog. Theor. Chem. and Phys., 18, 49 (2008) 

• D. Zgid and G. K.-L. Chan, Ann. Rep. Comp. Chem., 5, 149, (2009) 

• G. K.-L. Chan and S. Sharma, Ann. Rev. Phys. Chem., 62, 465 (2011) 

• K. Marti and M. Reiher, Phys. Chem. Chem. Phys., 13, 6750 (2011) 

• U. Schollwöck, Ann. Phys., 326, 96 (2011) 

• G. K.-L. Chan, WIREs, 2, 907 (2012)  

• Y. Kurashige, Mol. Phys., 112, 1485 (2013) 

• S. Wouters and D. van Neck, Eur. Phys. J. D, 68, 272 (2014) 

• S. Szalay et al., Int. J. Quantum Chem. 115, 1342 (2015) 

• T. Yanai et al., Int. J. Quantum Chem., 115, 283 (2015) 

• G. K.-L. Chan et al., J. Chem. Phys., 145, 014102 (2016) 

• A. Baiardi and M. Reiher, J. Chem. Phys. 152, 040903 (2020)



Intermission: singular value decomposition
• Singular value decomposition (SVD) of a matrix   

 
 
yields: 

• Left-singular matrix   with  

• Right-singular matrix   with  

• Diagonal singular value matrix   with  nonzero 
singular values  is the (Schmidt) rank of  

M (na × nb)

U (na × min(na, nb)) U†U = 1

V (min(na, nb) × nb) V†V = 1

S (min(na, nb) × min(na, nb)) r
→ r M

M = U S V†

=na

nb na

na

nb

na

na

na

column-wise orthonormal 
vectors

row-wise orthonormal 
vectors

M U V+S

Remember?



From a CI to an MPS parametrisation I
• Successive application of SVD to CI tensor  MPS wave function→

matrix

matrix product

rank-3 tensor

alal-1

kl physical index

virtual index

FCI tensor representation

MPS representation

SVD

orbital (“site”)



• Reshape coefficient tensor  into a  matrix  

• SVD of  yields 
 
 
 
 
 
with 

•  and  multiplied and reshaped into coefficient tensor  

•  

• collection of  row vectors  with entries 

ck1,k2,…,kL
d × dL−1 Γ

Γk1,(k2,…,kL)

S V† ca1,(k2,…,kL)

r1 ≤ d

d( = 4) Ak1 Ak1
1,a1

= Uk1,a1

Γk1,(k2,…,kL) = ck1,k2,…,kL

Γk1,(k2,…,kL) =
r1

∑
a1

Uk1,a1
Sa1,a1

(V†)a1,(k2,…,kL)

≡
r1

∑
a1

Ak1
1,a1

ca1,(k2,…,kL)

From a CI to an MPS parametrisation II



• Reshape coefficient tensor  into a  matrix  
 
 
 
 
 
 
 
 
 
with 

•  and  multiplied and reshaped into coefficient tensor  

•  

• collection of  matrices  with entries  

ca1,(k2,…,kL) r1d × dL−2 Γ

S V† ca1,(k2,…,kL)

r2 ≤ r1d ≤ d2

d Ak2 Ak2
a1,a2

= U(a1k2),a2

ck1,k2,…,kL
=

r1

∑
a1

Ak1
1,a1

Γ(a1k2),(k3,…,kL)

SVD=
r1

∑
a1

r2

∑
a2

Ak1
1,a1

U(a1k2),a2
Sa2,a2

(V†)a2,(k3,…,kL)

reshape
≡

r1

∑
a1

r2

∑
a2

Ak1
1,a1

Ak2
a1,a2

Γ(a2k3),(k4,…,kL)

From a CI to an MPS parametrisation III



• Continue with SVDs until last site which then gives 
 
 
 
 
 
 
with 

• interpretation of sums as matrix-matrix multiplications 

• first and last matrices are row- and column vectors! 

• CI wave function rewritten as MPS wave function: 
 

ck1,k2,…,kL
= ∑

a1,a2,…,aL−1

Ak1
1,a1

Ak2
a1,a2

⋯AkL−1
aL−2,L−1

AkL
aL−1,1

≡ Ak1Ak2⋯AkL−1AkL

Ψ⟩ = ∑
k

ck k⟩ = ∑
k1,k2,…,kL

Ak1Ak2⋯AkL−1AkL k⟩

From a CI to an MPS parametrisation IV



k1 kL

k1 kL

k1 kL

k1 kL

schematically…

From a CI to an MPS parametrisation V



Properties of the MPS I

• Matrix dimensions grow exponentially up to  if no 
truncation occurs, i.e., all singular values are kept

• From  follows that all matrices  are left-normalised

• MPS built from left-normalised matrices is called left-canonical

• For any lattice bipartition at site , the states on sites  
 
 
span a left subsystem  and form an orthonormal basis

dim(dL/2−1 × dL/2)

U†U = I {Akl}

l 1,…, l

ℒ

∑
kl

Akl†Akl = I

|al ⟩ℒ = ∑
k1,k2,…,kl

(Ak1⋯Akl)1,al
|k1, …, kl ⟩

=



Properties of the MPS II
• Starting SVD on coefficient tensor from right-hand side  
 
 
yields right-normalised matrices  (as )

• MPS built from right-normalised matrices is called right-canonical

• For any lattice bipartition at site , the states on sites  
 
 
span a right subsystem  and form an orthonormal basis

{Bkl} V†V = I

l + 1 l + 1…, L

ℛ

∑
kl

BklBkl† = I

|al+1 ⟩ℛ = ∑
kl+1,kl+2,…,kL

(Bkl+1⋯BkL)al,1
|kl+1, …, kL ⟩

=

Γ(k1,k2,…,kL−1),kL
= ck1,k2,…,kL



Gauge freedom and mixed-canonical form

• MPS representations are not unique  existence of a gauge degree of freedom

• Consider two adjacent matrices  and  of shared column/row dimension  
and a square invertible matrix  ( )

• Invariance of MPS immediately follows from 
 
 
since 

↔

Mkl Mkl+1 D
X D × D

Mkl → MklX; Mkl+1 → X−1Mkl+1

Mkl XX−1
⏟

=I

Mkl+1 = Mkl ⋅ Mkl+1



Mixed-canonical MPS representation

• Gauge freedom allows to write an MPS in mixed canonical form at sites  
 
 
 
by starting from a general MPS wave function  
 
 
 
and the two-site MPS tensor  reading as

{l, l + 1}

Mklkl+1

Ψ⟩ = ∑
k

Mk1Mk2⋯MkL k⟩

Mklkl+1 ≡ Mklkl+1
al−1,al+1

= ∑
al

Mkl
al−1,al

Mkl+1
al,al+1

Ψ⟩ = ∑
k

Ak1⋯Akl−1Mklkl+1Bkl+2⋯BkL k⟩



Matrix product operators I

• MPS concept applied to operators  matrix product operators (MPOs)

• -electron operator  in MPO form

→

N ̂𝒲̂𝒲 = ∑
kk′￼

∑
b1,…,bL−1

Wk1k′￼1
1,b1

Wk2k′￼2
b1,b2

⋯WkLk′￼L
bL−1,1

k⟩ ⟨k′￼

= ∑
kk′￼

Wk1k′￼1Wk2k′￼2⋯WkLk′￼L k⟩ ⟨k′￼

≡ ∑
kk′￼

wkk′￼
k⟩ ⟨k′￼



Matrix product operators II
• For efficiency, rearrange summations such that the contraction proceeds first over 

the local site indices 

• This allows us to write the equation on previous slide as

• Note: the entries of  matrices comprise the elementary, local operators 

acting on the -th orbital, e.g.,

klk′￼l

{ ̂Wl
bl−1,bl

}
l

̂Wl
bl−1,bl

= ∑
klk′￼l

Wklk′￼l
bl−1,bl

kl⟩ ⟨k′￼l

̂𝒲 = ∑
b1,…,bL−1

̂W1
1,b1

⋯ ̂Wl
bl−1,bl

⋯ ̂WL
bL−1,1

ã†
↑l

= ↑ ↓ ⟩ ⟨ ↓ + ↑ ⟩ ⟨0



Variational MPS optimisation I

• Goal: find optimal approximation  to  (in a least-square sense)

• Prerequisite: initialise suitable (valid) trial MPS wave function 

• choices: random guess, encode HF determinant, CI-DEAS, “old MPS” …

• assume normalisation, i.e., 

|Ψ̃ ⟩ |Ψ ⟩

|Ψ̃ ⟩

⟨Ψ |Ψ⟩ = 1

left subsystem right subsystemactive sites

“left-to-right sweep”

“right-to-left sweep”

|Y> =



Variational MPS optimisation II

• Ansatz for variational MPS optimization: extremize the Lagrangian  
 
 
with the two-site  matrices as optimization parameters

• Optimize at each step of a ”sweep” entries of site matrices of two orbitals  
(“two-site DMRG”) while keeping all the others fixed

• Sweep through all sites multiple times until energy converges

{Mklkl+1}

ℒ = ⟨Ψ Ĥ Ψ⟩ − λ (⟨Ψ Ψ⟩ − 1)

- l xℒ = - 1



Variational MPS optimisation III

• At sites , take derivative of  with respect to complex conjugate of 
 

 
which then yields

•  and : left and right boundaries obtained by contracting the MPO with the bra 
and ket MPS starting from left (right) up to sites 

{l, l + 1} ℒ
Mkl,kl+1

L R
l − 1(l + 1)

∂
∂Mkl,kl+1* (⟨Ψ Ĥ Ψ⟩ − λ [⟨Ψ Ψ⟩ − 1]) = 0

∑
a′￼l−1a′￼l

bl−1bl+1

∑
k′￼lk′￼l+1

Lbl−1
al−1,a′￼l−1

Wklkl+1,k′￼lk′￼l+1
bl−1,bl+1

Rbl+1
a′￼l+1,al+1

Mk′￼lk′￼l+1
a′￼l−1,a′￼l+1

= λ ∑
a′￼l−1a′￼l

ΨA
a′￼l−1,al−1

× Mk′￼lk′￼l+1
a′￼l−1,a′￼l+1

× ΨB
a′￼l+1,al+1



Variational MPS optimisation IV

∂
∂Mkl,kl+1*

↓

- l = 0   

L R YA YB

- l xℒ = - 1



Variational MPS optimisation V

• NB: Simplify generalized eigenvalue problem to a standard eigenvalue problem  
 
 
 
if MPS is a canonical MPS!

• Requires the initial MPS to be right-normalized! 

∑
a′￼l−1a′￼l

bl−1bl+1

∑
k′￼lk′￼l+1

Lbl−1
al−1,a′￼l−1

Wklkl+1,k′￼lk′￼l+1
bl−1,bl+1

Rbl+1
a′￼l+1,al+1

Mk′￼lk′￼l+1
a′￼l−1,a′￼l+1

= λMk′￼lk′￼l+1
a′￼l−1,a′￼l+1

- l = 0   

L R



Variational MPS optimisation VI

• Recast last equation into a matrix eigenvalue equation

• by defining a local Hamiltonian matrix  at sites 

• and a vector 

• Solving EV problem —> eigenvalue  and corresponding eigenvector 

𝓗 {l, l + 1}

v

λ0 v0
k′￼lk′￼l+1a′￼l−1a′￼l+1

𝓗v − λv = 0

H(klkl+1al−1al+1),(k′￼lk′￼l+1a′￼l−1a′￼l+1) = ∑
bl−1,bl+1

Lbl−1
al−1,a′￼l−1

Wklkl+1,k′￼lk′￼l+1
bl−1,bl+1

Rbl+1
a′￼l+1,al+1

vk′￼lk′￼l+1a′￼l−1a′￼l+1
= Mk′￼lk′￼l+1

a′￼l−1,a′￼l+1



Variational MPS optimisation VII

• Reshape  back to 

• is subsequently subject to a left- or right-normalisation (SVD!)

• By discarding the 3  smallest singular values in  to obtain  we achieve the 
desired reduction in bond dimensionality!

• The maximum (fixed) number  of retained singular values is usually called 
number of renormalized block states

v0
k′￼lk′￼l+1a′￼l−1a′￼l+1

Mk′￼lk′￼l+1
a′￼l−1,a′￼l+1

Mk′￼lk′￼l+1
a′￼l−1,a′￼l+1

m Sslsl
Sa′￼la′￼l

m

Mk′￼lk′￼l+1
a′￼l−1,a′￼l+1

= M(k′￼l,a′￼l−1)(k′￼l+1,a′￼l+1) = U(k′￼l,a′￼l−1)sl
Sslsl

Vsl(a′￼l+1,k′￼l+1)



Variational MPS optimisation VIII

• Discarding 3  smallest singular values corresponds to discarding the last 3  
columns (rows) of  ( ) such that

• Energy calculated as a function of the truncation error  
 
 
can be employed to obtain an error estimate through extrapolation

m m
U V

ϵ

Ak′￼l
a′￼l−1,a′￼l

≡ U(k′￼l,a′￼l−1)a′￼l

Mk′￼l+1
a′￼l,a′￼l+1

=
1

1 −
4m
∑

sl=m+1
Sslsl

Sa′￼la′￼l
Va′￼l(a′￼l+1,k′￼l+1)

ϵ =
4m

∑
sl=m+1

Sslsl
= | |Ψ16m2 − Ψ4m2 | |



Variational MPS optimisation IX

• Moving from sites to sites then completes the local 
optimization step

{l, l + 1} {l + 1,l + 2}



Scaling of variational MPS optimisation

• Scaling is dominated by cost of contracting the operator with the MPS on one site 
and is proportional to the number of non-zero elements in the MPO matrices 

• in a naïve MPO ansatz this step scales as 

• in an optimized code scaling reduces to 

• Further reduction through symmetry:  and 

• SVD scales as  (but there are  of them in a sweep)

• Taking into account all operations a sweep scales 

{ ̂W }

𝒪(L5)

𝒪(L4)

U(1) SU(2)

𝒪(m3) L

≈ 𝒪(L4m3)



Extrapolation

• Extrapolate  based on truncation error  for different values of 

• Example: ground-state calculation of 

E ϵ m

F2

ln (
EDMRG − EFCI

EFCI ) = a ln ϵ + b



Determining factors of DMRG convergence

• Size  of the CAS

• Type of molecular orbitals (HF, NO’s, localized orbitals, …)

• MPS guess for the right subsystem (initial sweep)

• Ordering of orbitals (exploit quantum information / graph theory)

• Number of renormalized block states  
 
One should never calculate results for just a single , but increase it in 
various runs until results converge!

L

m

m



Properties of DMRG

• Variational

• Size-consistent

• (approximate) FCI for a CAS

• Polynomial scaling ( )

• MPS wave function

• For large  invariant wrt orbital 
rotations

≈ L4m3

m

DMRG CASCI

• Variational

• Size-consistent

• FCI for a CAS

• Factorial scaling

• Linearly parametrised wave function

• Invariant wrt orbital rotations



(Incomplete) List of DMRG codes for QC

• Budapest-DMRG code (Matlab, no source code available)

• MOLMPS (C++, ?)

• (Stack)Block and Block2 (C++, source code available)

• CheMPS2 (C++, Fortran, source code available)

• QCMaquis (C++, Fortran, source code available)

• …



Other classical methods for large CAS

• FCI-Quantum Monte Carlo aka FCIQMC

• Heat-Bath CI (aka SHCI)

• selective CI / CIPSI-like approaches

• v(ariational) 2RDM

• … 
 
—> Extensions to treat dynamical electron correlation available!



The road ahead …



Thinking outside the box II
• CI-type diagonalization for a preselected set of many-particle basis states 

 
 

• Determine CI coefficients from correlations among orbitals 
 
 
 

• “Learn” the energy 
 
 
 
using an entangled set of qubits 

Standard CI approach

DMRG
Ψ⟩ = ∑

k1,k2,…,kL

ck1,k2,…,kL
k1⟩ ⊗ k2⟩ ⊗ … ⊗ kL⟩

Ψ⟩ = ∑
k1,k2,…,kL

ck1,k2,…,kL
k1⟩ ⊗ k2⟩ ⊗ … ⊗ kL⟩

Quantum Computing

⟨Ψ Ĥe Ψ⟩ = ∑
k

ck ⟨Ψ Pk Ψ⟩

Ψ⟩ = U( ⃗θ) k1⟩ ⊗ k2⟩ ⊗ … ⊗ kL⟩



Quantum Chemistry on a Quantum Computer:
Concepts and Challenges 



Some important references

• Quantum Chemistry in the Age of Quantum Computing  
Aspuru-Guzik et al., Chem. Rev. 119, 10856 (2019)

• Quantum computational chemistry 
McArdle, Endo, Aspuru-Guzik, Benjamin, Yuan, Rev. Mod. Phys. 92, 015003 
(2020)

• An adaptive variational algorithm for exact molecular simulations on a 
quantum computer 
Grimsley, Economou, Barnes, Mayhall, Nat. Comm.10, 3007 (2019)

• Simulated Quantum Computation of Molecular Energies,  
Aspuru-Guzik, Dutoi, Love, Head-Gordon, Science 309, 1704 (2005)

• Quantum chemistry, classical heuristics, and quantum advantage, 
Garnet Kin-Lic Chan, Faraday Discuss., 2024, doi: 10.1039/D4FD00141A



The origins of quantum computing

Yuri Manin

1980

Richard Feynman

1982

Simulating quantum physics



The origins of quantum computing

Yuri Manin

1980

Richard Feynman

1982

Simulating some quantum mechanical 
effects on a classical computer is unfeasible Use a quantum one!

Simulating quantum physics



The origins of quantum computing

From bits to …

Simulating quantum physics

qubits

• Classical bit can be either in state  or state

• Qubit can be in a superposition of both states

0⟩ 1⟩

ψ⟩ = α 0⟩ + β 1⟩ ≡ α [1
0] + β [0

1]



The origins of quantum computing

From bits to …

Simulating quantum physics

qubits

• Classical bit can be either in state  or state

• Qubit can be in a superposition of both states

0⟩ 1⟩

ψ⟩ = α 0⟩ + β 1⟩ ≡ α [1
0] + β [0

1]

ψ⟩ = 0⟩
superposition

ψ⟩ = α 0⟩ + β 1⟩
QC

ψ⟩ = γ 0⟩ + δ 1⟩

ψ⟩ = 0⟩

ψ⟩ = 1⟩

γ2

δ2



The origins of quantum computing

From bits to …

Simulating quantum physics

qubits

• Classical bit can be either in state  or state

• Qubit can be in a superposition of both states

• Measuring the state of the qubit with probability 

0⟩ 1⟩

P

ψ⟩ = α 0⟩ + β 1⟩ ≡ α [1
0] + β [0

1]

ψ⟩ = 0⟩
superposition

ψ⟩ = α 0⟩ + β 1⟩
QC

ψ⟩ = γ 0⟩ + δ 1⟩

ψ⟩ = 0⟩

ψ⟩ = 1⟩

γ2

δ2

P ( ψ⟩ = 0⟩) = γ2 and P ( ψ⟩ = 1⟩) = δ2



Using a quantum computer
as a quantum physics simulator

Arbitrary state of its qubits



Using a quantum computer

Arbitrary state of its qubits A universal quantum computer can solve problems 

beyond quantum simulation (e.g. factorisation)

as a quantum physics simulator



A universal quantum computer can solve problems 

beyond quantum simulation (e.g. factorisation)

Billions
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on
s

A universal quantum computer can solve problems 

beyond quantum simulation (e.g. factorisation)

Arbitrary state of its qubits

Using a quantum computer
as a quantum physics simulator

Quantum 5, 433 (2021)
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Using a quantum computer
as a quantum physics simulator

A universal quantum computer can solve problems 

beyond quantum simulation (e.g. factorisation)

Arbitrary state of its qubits

Quantum 5, 433 (2021)



Billions

M
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on
s

We are in the era of the Noisy 
Intermediate-Scale Quantum computers:

soon useful for simulation!

Hundreds

H
un

dr
ed

s

Using a quantum computer
as a quantum physics simulator

A universal quantum computer can solve problems 

beyond quantum simulation (e.g. factorisation)

Arbitrary state of its qubits

Quantum 5, 433 (2021)



Quantum computer technologies

Source: Quantum Computing Modalities -  
A Qubit Primer Revisited -  

The Quantum Leap (quantum tech.blog)



Electronic wave-function 
representation

Chemical 
properties

Fermion-to-qubit mapping

Post-processing

The state of the quantum processor 
mathematically represents the state of 
the molecule 

The goal is to find the state of the 
molecule for which the energy is minimal 

The energy of the molecule needs to be 
measured 

Quantum Computing  
for Quantum Chemistry in a Nutshell



Challenges in near-term QC

1. Measurement stage is time-consuming 

2. Hilbert space is a big space 

3. Qubits are a scarce resource 

4. Noise biases the results 

5. Resource efficient/aware representation

Electronic wave-function 
representation

Chemical 
properties

Fermion-to-qubit mapping

Post-processing



Challenges in near-term QC

Electronic wave-function 
representation

Chemical 
properties

Fermion-to-qubit mapping

Post-processing

1. Measurement stage is time-consuming 

2. Hilbert space is a big space 

3. Qubits are a scarce resource 

4. Noise biases the results 

5. Resource efficient/aware representation



Challenges in near-term QC

Electronic wave-function 
representation

Chemical 
properties

Fermion-to-qubit mapping

Post-processing

1. Measurement stage is time-consuming 

2. Hilbert space is a big space 

3. Qubits are a scarce resource 

4. Noise biases the results 

5. Resource efficient/aware representation



Challenges in near-term QC

Electronic wave-function 
representation

Chemical 
properties

Fermion-to-qubit mapping

Post-processing

1. Measurement stage is time-consuming 

2. Hilbert space is a big space 

3. Qubits are a scarce resource 

4. Noise biases the results 

5. Resource efficient/aware representation



Challenges in near-term QC

Electronic wave-function 
representation

Chemical 
properties

Fermion-to-qubit mapping

Post-processing

1. Measurement stage is time-consuming 

2. Hilbert space is a big space 

3. Qubits are a scarce resource 

4. Noise biases the results 

5. Resource efficient/aware representation



Mapping “the problem” from 
fermion to qubit space



Mapping the problem from fermion to qubit space
General considerations

• We need to map both


• N-electron wave function 
 

• Second-quantized Hamiltonian


• Fermions are indistinguishable particles, qubits are distinguishable 
—> we need to account for anti-commutation of fermionic operators in the map! 

Ψ⟩

{ ̂ap, ̂aq} = 0 { ̂a†
p, ̂a†

q} = 0 { ̂ap, ̂a†
q} = δpq

Ĥe = ∑
p,q

hpq
̂Epq +

1
2 ∑

p,q,r,s

(pq |rs) ( ̂Epq
̂Ers − δqr

̂Eps) ?

Ψ⟩ = ∑
ζ

cζ Φζ⟩



Exact for infinite M!

• Write wave function in ON vector basis for  single-particle basis statesM

N-electron wave function
Mapping the problem from fermion to qubit space

Ψ⟩ = ∑
f

cf fM−1…f1 f0⟩ with fp ∈ {0,1}



Exact for infinite M!

• Write wave function in ON vector basis for  single-particle basis statesM

N-electron wave function
Mapping the problem from fermion to qubit space

Ψ⟩ = ∑
f

cf fM−1…f1 f0⟩ with fp ∈ {0,1}

• Trivial interaction of fermionic creation/annihilation operators on ON
̂a†
p fM−1…fp+1 0 fp−1…f0⟩ = (−1)∑p−1

s=0 fs fM−1…fp+1 1 fp−1…f0⟩
̂a†
p fM−1…fp+1 1 fp−1…f0⟩ = 0

̂ap fM−1…fp+1 1 fp−1…f0⟩ = (−1)∑p−1
s=0 fs fM−1…fp+1 0 fp−1…f0⟩

̂ap fM−1…fp+1 0 fp−1…f0⟩ = 0



• Trivial translation of fermionic ON vector basis to qubit ON vector basis

N-electron wave function
Mapping the problem from fermion to qubit space

fM−1…f1 f0⟩

• What about creation/annihilation operators for qubits?

with fp ≡ qp ∈ {0,1}qM−1⟩⋯ ⊗ q1⟩ ⊗ q0⟩ ≡ qM−1…q1q0⟩



• Use a simple recipe for one-qubit creation and annihilation operators?

Jordan-Wigner mapping
Mapping the problem from fermion to qubit space

Q̂+ 1⟩ = 0 Q̂+ 0⟩ = 1⟩ Q̂− 1⟩ = 0⟩ Q̂− 0⟩ = 0and
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• Use a simple recipe for one-qubit creation and annihilation operators?

Jordan-Wigner mapping
Mapping the problem from fermion to qubit space

Q̂+ 1⟩ = 0 Q̂+ 0⟩ = 1⟩ Q̂− 1⟩ = 0⟩ Q̂− 0⟩ = 0and

Do not obey the fermionic anti-commutation relations!

• Better ansatz? Form operators based on Pauli matrices!

Q̂+ = 1⟩ ⟨0 ≡
1
2 (σx − iσy) =

1
2

(X − iY)

Q̂− = 0⟩ ⟨1 ≡
1
2 (σx + iσy) =

1
2

(X + iY)



• Why are Pauli matrices a suitable choice?

Jordan-Wigner mapping
Mapping the problem from fermion to qubit space

σx = (0 1
1 0) σy = (0 −i

i 0 ) σz = (1 0
0 −1)
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• Why are Pauli matrices a suitable choice?

Jordan-Wigner mapping
Mapping the problem from fermion to qubit space

σx = (0 1
1 0) σy = (0 −i

i 0 ) σz = (1 0
0 −1)

Single-qubit quantum gates are  unitary matrices 2 × 2

—> Pauli matrices are  Hermitian (unitary) matrices

—> Pauli matrices are involutory: 


—> Pauli matrices anti-commute: 


2 × 2
σ2

p = 1 ∀p ∈ [x, y, z]

{σp, σq} = 2Iδpq ∀p, q ∈ [x, y, z]



• Because of anti-commutation among Paulis,  and  anti-commute


• Represent action of fermionic operators  for index  by acting with  on 
qubit  and with  on all qubits with index  and with the identity  on 
the remaining qubits

Q̂± σz

̂a(†)
p p Q̂±

p σz q < p 1

Jordan-Wigner mapping
Mapping the problem from fermion to qubit space
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1
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• Represent action of fermionic operators  for index  by acting with  on 
qubit  and with  on all qubits with index  and with the identity  on 
the remaining qubits

Q̂± σz

̂a(†)
p p Q̂±

p σz q < p 1
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̂a†
p ≡ 1⊗M−p−1 ⊗ Q̂+

p ⊗ [σ⊗p
z ] =

1
2 (Xp ⊗ [σ⊗p

z ] − iYp ⊗ [σ⊗p
z ])

̂ap ≡ 1⊗M−p−1 ⊗ Q̂−
p ⊗ [σ⊗p

z ] =
1
2 (Xp ⊗ [σ⊗p

z ] + iYp ⊗ [σ⊗p
z ])



• Major drawback of Jordan-Wigner mapping: -locality! 
-locality: each term in the Hamiltonian acts non-trivially on at most  qubits 

 
—> non-locality of “parity term ” that appears in  introduces a number 

of extra qubit operations which scale as !


• Example: how does it work for mapping one-electron terms 
 
  ?

k
k k

[σ⊗p
z ] ̂a(†)

p

𝒪(M)

ĥ = ∑
pq

hpq ̂a†
p ̂aq

Jordan-Wigner mapping
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Jordan-Wigner mapping
Mapping the problem from fermion to qubit space

Could we avoid to operate with  on all qubits  with 
?

σz q
q < p



Parity mapping
Mapping the problem from fermion to qubit space

• Alternative idea to occupation number basis —> parity basis: 
 
Use qubit  to store the parity  of all occupied orbitals up to 


• Parity of set of orbitals with  determines whether  introduces a 
phase of -1 
 
—> it suffices to only have  acting on qubit 

p 𝒫 p

q < p ̂a(†)
p

σz p − 1

𝒫p = mod (
p

∑
s=0

fs , 2)



Parity mapping
Mapping the problem from fermion to qubit space

• BUT: we cannot represent the creation or annihilation of a particle in qubit  
 
with  since  stores the parity of all orbitals with index 


• Representing for example  in terms of  depends on qubit :


• qubit  is in state : act on qubit  with 


• qubit  is in state : act on qubit  with 

qp

Q̂(±)
p qp q ≤ p

̂a†
p Q̂±

p (p − 1)

(p − 1) 0⟩ p Q̂+
p

(p − 1) 1⟩ p Q̂−
p



Parity mapping
Mapping the problem from fermion to qubit space

• Operator equivalent to  in parity basis is  and a two-qubit operator!Q̂± ̂P±

̂P±
p ≡ Q̂±

p ⊗ 0⟩ ⟨0
p−1

− Q̂∓
p ⊗ 1⟩ ⟨1

p−1

=
1
2 (Xp ⊗ Zp−1 ∓ iYp)
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• Operator equivalent to  in parity basis is  and a two-qubit operator! 
 
 
 
 
 
 
Caution: creating/annihilating a particle in  changes the parity to be stored in 
qubits with index greater : apply  to all qubits  with 

Q̂± ̂P±

p
p σx qk k > p

̂P±
p ≡ Q̂±

p ⊗ 0⟩ ⟨0
p−1

− Q̂∓
p ⊗ 1⟩ ⟨1

p−1

=
1
2 (Xp ⊗ Zp−1 ∓ iYp)



Parity mapping
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• Operator equivalent to  in parity basis is  and a two-qubit operator! 
 
 
 
 
 
 
Caution: creating/annihilating a particle in  changes the parity to be stored in 
qubits with index greater : apply  to all qubits  with 

Q̂± ̂P±

p
p σx qk k > p

̂P±
p ≡ Q̂±

p ⊗ 0⟩ ⟨0
p−1

− Q̂∓
p ⊗ 1⟩ ⟨1

p−1

=
1
2 (Xp ⊗ Zp−1 ∓ iYp)

̂a†
p ≡ [σ⊗M−p

x ] ⊗ ̂P+
p =

1
2 ([σ⊗M−p

x ] ⊗ Xp ⊗ Zp−1 − i [σ⊗M−p
x ] ⊗ Yp)

̂ap ≡ [σ⊗M−p
x ] ⊗ ̂P−

p =
1
2 ([σ⊗M−p

x ] ⊗ Xp ⊗ Zp−1 + i [σ⊗M−p
x ] ⊗ Yp)



• Major drawback of parity mapping: -locality!  
 
—> non-locality of “update term ” that appears in  introduces a 
number of extra qubit operations which scale as ! 

k

[σ⊗M−p
x ] ̂a(†)

p

𝒪(M)
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• Major drawback of parity mapping: -locality!  
 
—> non-locality of “update term ” that appears in  introduces a 
number of extra qubit operations which scale as !


• Trailing string of  (J-W) replaced by leading string of  … 

k

[σ⊗M−p
x ] ̂a(†)

p

𝒪(M)

σz σx
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—> non-locality of “update term ” that appears in  introduces a 
number of extra qubit operations which scale as !
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• Example: how does it work for mapping one-electron terms 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k

[σ⊗M−p
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p

𝒪(M)
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Parity mapping
Mapping the problem from fermion to qubit space

Could we avoid to to operate with  on all qubits  with 
?

σx q
q > p



• Major drawback of parity and J-W mapping: -locality which is also referred 
to as Pauli weight 

• Other more elaborate mappings exist which scale as   
[Bravyi-Kitaev —> “combines ideas” of J-W and parity mappings] or  
even up to 

k

𝒪(log2 M)

𝒪(log3 M)

Notes on other mappings
Mapping the problem from fermion to qubit space



Bravyi-Kitaev
Mapping the problem from fermion to qubit space



• Major drawback of parity and J-W mapping: -locality which is also referred 
to as Pauli weight 

• Other more elaborate mappings exist which scale as   
[Bravyi-Kitaev —> “combines ideas” of J-W and parity mappings] or  
even up to 


• Customised (tree-based) mappings tailored to QC hardware layout are also 
possible!

k

𝒪(log2 M)

𝒪(log3 M)

Notes on other mappings
Mapping the problem from fermion to qubit space



• Common outcome of mappings:  is expressed as a sum of Pauli strings Ĥe Pk

Notes on other mappings
Mapping the problem from fermion to qubit space

Ĥe = ∑
pq

hpqa†
paq +

1
2 ∑

pqrs

gpqrsa†
pa†

r asaq Ĥe = ∑
k

ckPk



• The Hamiltonian is given as a linear combination of Pauli strings


• We can calculate expectation values on the quantum computer

on a quantum computer
Calculating the energy

Each term is a product of local operatorsĤe = ∑
k

ckPk Pk = ⊗M−1
s=0 σks,(s)

⟨Ψ Ĥe Ψ⟩ = ∑
k

ck ⟨Ψ Pk Ψ⟩Ψ⟩ = ∑
f

cf fM−1…f1 f0⟩
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• The Hamiltonian is given as a linear combination of Pauli strings


• We can calculate expectation values on the quantum computer

on a quantum computer
Calculating the energy

Each term is a product of local operatorsĤe = ∑
k

ckPk Pk = ⊗M−1
s=0 σks,(s)

⟨Ψ Ĥe Ψ⟩ = ∑
k

ck ⟨Ψ Pk Ψ⟩Ψ⟩ = ∑
f

cf fM−1…f1 f0⟩

Cannot even be written down 
on a classical computer

“Easy” on a quantum computer: only 
requires measuring Pauli strings

Ψ⟩?



Variational optimisation with the 
Variational Quantum Eigensolver



Variational optimisation with the 
Variational Quantum Eigensolver

… which is just one example, many algorithms exist, not to mention fault-tolerant ones…
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The Variational Quantum Eigensolver

• Prepare some quantum state using a 
so-called variational form (ansatz)
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Solving the problem
The Variational Quantum Eigensolver

• Prepare some quantum state using a 
so-called variational form (ansatz)


• Gates (unitary rotations) in the ansatz 
have free parameters 


• For each value of the parameters the 
resulting state has some mean energy


• Find the ground state variationally: 
minimising over the parameters 

{ ⃗θ}

{ ⃗θ}

|Ψ( ⃗θ) >

⟨E⟩ = ⟨Ψ( ⃗θ) Ĥe Ψ( ⃗θ)⟩ ≥ Eground



Measuring the energy
in a VQE simulation

Every Pauli string evaluated 
independently through repeated 
measurements

⟨Ψ Ĥe Ψ⟩ = ∑
k

ck ⟨Ψ Pk Ψ⟩



Measuring the energy
in a VQE simulation

Every Pauli string evaluated 
independently through repeated 
measurements

⟨Ψ Ĥe Ψ⟩ = ∑
k

ck ⟨Ψ Pk Ψ⟩

Repeat each many times to 
estimate the mean ⟨Ψ Pk Ψ⟩



Solving the problem?
The Variational Quantum Eigensolver

|Ψ( ⃗θ) >

Sounds good, BUT


• How do we know the ansatz contains 
the ground state?


• How do we find the corresponding 
parameters?


• How efficient is the whole approach?


• What about the noise?
⟨E⟩ = ⟨Ψ( ⃗θ) Ĥe Ψ( ⃗θ)⟩ ≥ Eground
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• There are mainly two broad strategies in 
circuit ansatz design


• physically motivated ansätze 


• hardware heuristic ansätze  
—> parametrized circuits comprising 
single-qubit rotations and entangling 
blocks chosen to take advantage of 
specific quantum hardware capabilities
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The Variational Quantum Eigensolver
UCCSD ansatz

• UCCSD ansatz has the form 

   with     


• Commonly approximation: Trotterize unitary to first order 
 




—> Low-order trotterized form may fail to reach chemical accuracy 
—> Large number of exponential factors prohibits preparation on quantum processors

ΨUCCSD⟩ = e ̂T1+ ̂T2 Ψref⟩
̂T1 = ∑

i,a

̂τa
i = ∑

i,a

τa
i (a†

aai − a†
i aa)

̂T2 = ∑
i,j,a,b

̂τab
ij = ∑

i,j,a,b

τab
ij (a†

aa†
b aiaj − a†

j a†
i abaa)

ΨtUCCSD⟩ = ∏
c∈{ia}

e ̂τc ∏
d∈{ijab}

e ̂τd Ψref⟩



The Variational Quantum Eigensolver
ADAPT-VQE ansatz

• The ADAPT-VQE algorithm grows ansätze by appending one unitary at a time to a trial 
state


• Requires to 


• a priori define an operator pool , a collection of antihermitian generators 
—>  and  in UCCSD


• choose a reference state calculate (HF or anything reasonable) 
 

• The operator with the largest gradient norm is appended to the ansatz

𝒫 = {Pi}
̂τa
i ̂τab

ij

∂E
∂θi θi=0

= [ ∂
∂θi

⟨Ψ(k) e−θiPiHeθiPi Ψ(k)⟩]
θi=0

= ⟨Ψ(k) [H, Pi] Ψ(k)⟩



Choosing an ansatz - ADAPT-VQE

Nat. Comm., 10, 3007 (2019)
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Solving the problem?
The Variational Quantum Eigensolver

|Ψ( ⃗θ) >

⟨E⟩ = ⟨Ψ( ⃗θ) Ĥe Ψ( ⃗θ)⟩ ≥ EgroundarXiv: 2012.04001



Solving the problem?
The Variational Quantum Eigensolver

|Ψ( ⃗θ) >

Sounds good, BUT


• How do we know the ansatz contains 
the ground state?


• How do we find the corresponding 
parameters?


• How efficient is the whole approach?


• What about the noise?
⟨E⟩ = ⟨Ψ( ⃗θ) Ĥe Ψ( ⃗θ)⟩ ≥ Eground

Efficient measurement strategies are required! 
Noise mitigation is crucial!



Molecular properties / Dynamical correlation
The Variational Quantum Eigensolver

• Expectation values of one-electron  and 
two-electron  operators can be 
straightforward obtained from optimal VQE


• Higher-order RDMs … 
—> CASPT2/NEVPT2, response theory, …


• quantum equation-of-motion …


• …

Ô1
Ô2

⟨E⟩ = ⟨Ψ( ⃗θ) Ĥe Ψ( ⃗θ)⟩ ≥ Eground

⟨Ô1⟩ = ∑
pq

opq ⟨ ̂a†
p ̂aq⟩

⟨Ô2⟩ = ∑
pqrs

opqrs ⟨ ̂a†
p ̂a†

r ̂as ̂aq⟩



Quantum computers without 
algorithms are useless machines 

CONCLUSION 

With proper algorithms we can make quantum computers work 

We need to know how to measure 

We need to mitigate errors and correct for them  


