Multiconfigurational methods:

past, present and the road
ahead

Stefan Knecht



Content of the lectures

e Concepts

Past
e CASCI

e MCSCLEF/CASSCF

e MR Dynamical Correlation Approaches

Present: “Sample” CI coeflicients using an advanced optimisation algorithm
e Density Matrix Renormalisation Group
Road ahead: Beyond “classical quantum chemistry”

e Quantum Chemistry on Quantum Computers



The Present ...




Second example: the Cr2 puzzle resolved

H. R. Larsson, H. Zhai, C. J. Umrigar, G. K.-L. Chan, JACS, 144, 15932 (2022)



Cr2 potential energy curse...
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FIG. 1. Some of the simulated potential energy curves (PECs) of the chromium dimer that are available in the literature. The
PECs are labeled by the study’s year. The red curve marks the PEC from this work. The inset shows selected PECs from 2011
onwards. (List of references in SI).

Short and weak bond with a narrow minimum around 1.68 A & extended shelf at around 2.5 A.
- Cr 4s and 3d AOs different in size, with the minimum corresponding mostly to 3d orbital interactions and
the shelf to 4s orbital interactions.



 Complex electronic structure arises from
. — “static correlation”: spin-coupling of the 12 valence electrons (3d + 4s shells)

. — "spatial correlation / dynamic correlation”. need for a large basis to capture
excitations involving non-valence orbitals

—> formation of 3d-3d bonds requires the 3p electrons to move out of the same spatial region
by exciting to higher lying orbitals

“The problem is computationally challenging because both the static and dynamic
correlation must be computed sufficiently well even for a qualitatively reasonable
description.”




Computational approach |

AE = AEpDz(“CxaCt”) + AECBS (MPS-REPTZ) — AEDZ (MPS-REPTZ)

o Static electron correlation: CAS(28e,760)/cc-pVDZ-DK
 Heat-Bath CI (selective CI)
« DMRG (with huge bond dimension!)

* Dynamic electron correlation: CAS(12,12)/MRPT2
 PT2 correlation of 3s and 3p inner-valence shells

 all secondary shells considered

* Basis set: MRPT2 with cc-pvNZ-DK (N=2,3,4,5) with extrapolation to CBS limit



Computational approach I
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New state-of-the-art
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Thinking outside the box
Standard CI approach

o Cl-type diagonalization for a preselected set of many-particle basis states

|‘P> = Z Chkonk | K1) ® |K2) ® ... ® |ky)

ki oKy

e Could we do better or, say, something else?



e Cl-type diagonalization for a preselected set of many-particle basis states

|‘P> = Z Chkonk | K1) ® |K2) ® ... ® |ky)

ki oKy

e Could we do better or, say, something else?

e sclect many-particle basis sets / configurations / etc. based on some energy/weighting criteria:
- selected CI approaches
- difference dedicated CI,
- many-body expansion FCI
>

e find “best” many-particle basis set based on correlations among orbitals - DMRG



Thinking outside the box
Standard CI approach

e Cl-type diagonalization for a preselected set of many-particle basis states

|‘P> = Z Chkonk | K1) ® |K2) ® ... ® |ky)

ki oKy

DMRG

e Determine CI coeflicients from correlations among orbitals

|T> = Z Cki oy k1> & k2> ® ... |kL>

ki ko ky

e Local space k; of [-th spatial orbital is of dimension d = 4:

k={] 1LY | 1)] )]0




From a Cl wave function to Matrix Product States (MPS):
Optimising an MPS with the DMRG algorithm



Optimising an MPS wave tfunction with the DMRG algorithm

e Optimisation algorithm

e Parameters that determine DMRG accuracy

U. Schollwock, The density-matrix renormalization group in the age of
matrix product states, Annals of Physics, 326 (2011) 96—192.



e O.Legeza et al., Lect. Notes Phys., 739, 653 (2008)

® G.K.-L. Chan et al., Prog. Theor. Chem. and Phys., 18, 49 (2008)

e D.Zgid and G. K.-L. Chan, Ann. Rep. Comp. Chem.,, 5, 149, (2009)

e G.K.-L. Chan and S. Sharma, Ann. Rev. Phys. Chem., 62, 465 (2011)
e K. Marti and M. Reiher, Phys. Chem. Chem. Phys., 13, 6750 (2011)

e U. Schollwock, Ann. Phys., 326, 96 (2011)

e G.K.-L. Chan, WIREsS, 2, 907 (2012)

e Y. Kurashige, Mol. Phys., 112, 1485 (2013)

e S. Wouters and D. van Neck, Eur. Phys. J. D, 68, 272 (2014)

@ S. Szalay et al., Int. J. Quantum Chem. 115, 1342 (2015)

e T. Yanai et al., Int. J. Quantum Chem.,, 115, 283 (2015)
e G.K.-L. Chan et al,, J. Chem. Phys., 145, 014102 (2016)
e A. Baiardi and M. Reiher, J. Chem. Phys. 152, 040903 (2020)



e Singular value decomposition (SVD) of a matrix M (n,, X n,,)

yields:
e Left-singular matrix U (n, X min(n_, n,)) withU'U = 1
e Right-singular matrix V (min(n_, n,) X n,) with VI'v = 1

e Diagonal singular value matrix S (min(n_, n,) X min(n , n,)) with r nonzero
singular values — ris the (Schmidt) rank of M

1y, n, n, 1y,

column-wise orthonormal row-wise orthonormal
vectors vectors



From a CI to an MPS parametrisation I

e Successive application of SVD to CI tensor = MPS wave function

orbital (“site”) FCI tensor representation
. | 1] )
matrix _

—8-9- SVD

matrix product |
K physical index MPS representation

d,_1 i a, virtual index i i i i i

rank-3 tensor




o coefficient tensor ¢ ;  ; intoad X d ! matrix I

,,,,,,,

Fkl,(kz,. k) = Sk, ky

o SVD Of rkl,( k2 kL) YIQIdS
Fkl (kp,....kp) — Z Ukl a;~ay, al(V ) ap,(ky,....kp)

aq

o Z Al ,aq al (kas....kp)

—}— . .
o SandV into coeftlicient tensor Cay (ko )

with

‘I"ISd

e collection of d( = 4) row vectors A* with entries A1 = Uy 4,
1 ,

A



coefficient tensorc, .  ; intoar;d X d=> matrix T
1( 25+ 5K1)

Ck1’k2’° Z Al Cllr(alk2)a(k39° y "kL)
SVD ;
Z Z Al A U(a1k2)9a2sa29a2(v )a2a(k3v° y °9kL)
reshape "
with Z Z Al lalAal azr(a2k3),(k4,...,kL)
e Sand V' mto coefficient tensor ¢, . ;)

0F2§F1d§d2

e collection of d matrices A% with entries A 51, a, = =U (a1k>).an



e Continue with SVDs until last site which then gives

_ 4k k. Ak
Chi ko k) — Z Al Al AT AT

l,a; 414 Ar21-1 ay_q,1
ai,ay,...,a;—1

— AklAkz...AkL—lAkL
with

e interpretation of sums as matrix-matrix multiplications
e firstand last are row- and column vectors!

e CI wave function rewritten as MPS wave function:

|\P> — Z Cr. |k> — Z AkiAR. AR AR
k kyskys. ..k

k)



From a CI to an MPS pdrameftrisation V

K. K,
E =
K. \ K,
Ki ¢ 9
W
v
K h K

1 L




Matrix dimensions grow exponentially up to dim(d”/*~! x d"/%)
occurs, I.e., all singular values are kept

From UTU = I follows that all matrices {A%} are

) ANTAk =] ] <
kl

MPS built from left-normalised matrices is called

For any lattice bipartition at site /, the states on sites 1,...,/

), = ), (AbAk) k. k)
ki ko . K -

span a left subsystem £ and form an orthonormal basis



« Starting SVD on coefficient tensor from right-hand side
F(kl,kz,. kDK = Ckiko,. .k

yields matrices {B"} (as V'V = I

ZB"ZBlir — ] I) >
kl

 MPS built from right-normalised matrices is called

. For any lattice bipartition at site [ + 1, the statesonsites/+ 1..., L
a1 ), = 2 (Bkm...BkL)akal [s oo Kp )

K 15K 00K,
span a right subsystem & and form an orthonormal basis




« MPS representations are not unique <> existence of a gauge degree of freedom

« Consider two adjacent matrices M ki and M"+1 of shared column/row dimension D
and a square invertible matrix X (D X D)

. of MPS immediately follows from
Mk — MAX: MRy — Xk
since

ME x X1 Ml = MK . M

N ——— —

=1



» Gauge freedom allows to write an MPS in form at sites {/[,[+ 1}

|\P> — ZAkl...Akl—lelkl+1Bkl+2...BkL k>

by starting from a general MPS wave function

|\{l> - ZMklez...
k

and the reading as

M klkl+1 = klkl+1 2 M ki kz+1

az 1,d141 d;_1,d; az A



« MPS concept applied to operators — matrix product operators (MPQOs)

 N-electron operator 77 in MPO form

o kikivirkoks  irkiky | /
W = Z 2 Wl,bl Wbl,bz WbL_1,1 k) (k
kk' b,,....b;_,

— Z Wklki szké...WkLki
kk'

= Z Wik |k) (k'
kk’

k) (k'




* For efficiency, rearrange summations such that the contraction proceeds first over
the local site indices kk;

l klkl /
sz Lb Z Wbl 1,D; kl) <kl
kik;

* This allows us to write the equation on previous slide as

AA

1 [ I
Z Win, = Wo b W,
bL 1

A

. . the entries of {W,ﬁl 1 bz} matrices comprise the elementary, operators

acting on the [-th orbital, e.qg.,
al =11y (L] +]1)(0]



“left-to-right sweep

- 6008 &6&35 ®

left subsystem active sites rlght subsystem

“right-to-left sweep”
. - find optimal approximation | ¥ ) to | ¥ ) (in a least-square sense)

o Prerequisite: initialise suitable (valid) trial MPS wave function |‘i’)

* choices: random guess, encode HF determinant, CI-DEAS, “old MPS” ...

. assume normalisation, i.e., (¥ |W) = 1



*9990

so 000

for variational MPS optimization: extremize the Lagrangian

7= (Y| H|w) —z(<\11| Py — 1)
with the two-site {Mklkl+1} matrices as optimization parameters

* Optimize at each step of a "sweep” entries of site matrices of two orbitals
(“two-site DMRG”) while keeping all the others fixed

 Sweep through all sites multiple times until energy converges



. Atsites {/,[+ 1}, take derivative of &£ with respect to complex conjugate of

Mklvkl+1 0 ~
o (sl
which then yields
b_, kzk1+1 kiK1 p bt kikiepr
Z Z Laz 1,a]—1 bz 150141 Ram 611+1Maz'—1aaz'+1 4 Z lPal 1>¢1-1
a_1a; ik, a4
bi_1by4
X Mklkl+1
aj_1,0141
B
X \Pam iy
« [.and R: /eft and obtained by contracting the MPO with the bra

and ket MPS starting from left (right) up to sites [ — 1(/ + 1)



Variational MPS optimisation IV




Variational MPS optimisation V

* NB: Simplify generalized eigenvalue problem to a standard eigenvalue problem
Z Z Lbl 1 klkl+1 kl,kl+1Rbl+1 Mkl,kl,_l_l _ AMkl’kl_l_l

a;_1,a;_1 bz 1Dy A 1,011 Aj_1,0141 aj_1,a14 1
19 kikiy g

bi_1D14,
if MPS iIs a canonical MPS!

* Requires the initial MPS to be right-normalized!



* Recast last equation into a matrix eigenvalue equation

HVv—lv=0_0

. by defining a local Hamiltonian matrix & at sites {[,[ + 1}

— bl—l klkl+1’kl,kl,+1 bl+1
H(kzk1+1az—1611+1)a(kz'kz'+1az'—1az’+1) - Z Lal_l,al’_lwbl_l,bm Raz'+1,az+1
b_ 1,014
« and a vector v
— Mkl,kl,ﬂ

Vi1 / / , ,
klkl+1al—1al+1 a1,

. So0lving EV problem —> eigenvalue A9 and corresponding eigenvector v,?,

/ / /
kl+1al—1al+1



Reshape v,?,, , , backto Mklkl+1

Ki4101-1a141 ay_1,04 1

M" l“, IS subsequently subject to a left- or right-normalisation (SVD!)

a)—1,0]4 1
M =M = Ui 15555V
a_1,0]41 (k@i )(kpy 1,041 (kpai—1)s/=815; " s(apy 1K1
By the smallest singular values in §, ;. to obtain S , . we achieve the
1S 14

The maximum (fixed) number /71 of retained singular values is usually called



» Discarding singular values corresponds to discarding the
of U (V) such that

k/
AT =

il = Ykal
MFi : S .V

+ —
a,aj 4m aa; " af(agy 1,k 1)
1 o Z SSlSl
s=m+1

« Energy calculated as a function of the truncation error €

4dm
e= D Sy =1Wiem— Yyl

si=m+1

can be employed to obtain an error estimate through extrapolation



Variational MPS optimisation IX

» Moving from sites {/, [ + 1 }to sites {/ + 1.,/ + 2 }then completes the local
optimization step



Scaling is dominated by cost of contracting the operator with the MPS on one site
and is proportional to the number of non-zero elements in the MPO matrices { W }

« In a naive MPO ansatz this step scales as

e INn an optimized code scaling reduces to

Further reduction through symmetry: U(1) and
SVD scales as (but there are L of them in a sweep)

Taking into account all operations



« Extrapolate £ based on truncation error € for different values of m

EDMRG ~ EFCI

Epcl
« Example: ground-state calculation of F>

In =alne+ b

-~ 198 9706 )

:
!
-
-
-
-
-
-




Size L of the CAS

Type of molecular orbitals (HF, NO’s, localized orbitals, ...)
MPS guess for the right subsystem (initial sweep)

Ordering of orbitals (exploit quantum information / graph theory)

Number of renormalized block states m



Variational e Variational

Size-consistent * Size-consistent

(approximate) FCI for a CAS  FCI for a CAS

Polynomial scaling ( & L4m3) * Factorial scaling

MPS wave function * Linearly parametrised wave function
For large m invariant wrt orbital * |nvariant wrt orbital rotations

rotations



Budapest-DMRG code (Matlab, no source code available)
MOLMPS (C++, ?)

(Stack)Block and Block2 (C++, source code available)
CheMPS2 (C++, Fortran, source code available)

QCMaquis (C++, Fortran, source code available)



Other classical methods for large CAS

FCI-Quantum Monte Carlo aka FCIQMC
Heat-Bath Cl (aka SHCI)

selective Cl / CIPSI-like approaches

v(ariational) 2RDM

—> Extensions to treat dynamical electron correlation available!



The road ahead ...




Thinking outside the box II
Standard CI approach

e Cl-type diagonalization for a preselected set of many-particle basis states

‘q’>= Z Chyks. .y

£)® k) ®...® | k)

ki k.. ky DMRG
e Determine CI coeflicients from correlations among orbitals
“P> = Z Chorto | K1) ® ‘k2> ®...Q ‘kL>
kiky,....k;
Quantum Computing
® “Learn” the energy
(P| A, |¥) = ) o (¥| P |P)

k
using an entangled set of qubits

W) =U0) k) ® k) ®...0 |k )




Quantum Chemistry on a Quantum Computer:
Concepts and Challenges



e Quantum Chemistry in the Age of Quantum Computing
Aspuru-Guzik et al.,, Chem. Rev. 119, 10856 (2019)

e Quantum computational chemistry
McArdle, Endo, Aspuru-Guzik, Benjamin, Yuan, Rev. Mod. Phys. 92, 015003
(2020)

* An adaptive variational algorithm for exact molecular simulations on a
quantum computer
Grimsley, Economou, Barnes, Mayhall, Nat. Comm.10, 3007 (2019)

» Simulated Quantum Computation of Molecular Energies,
Aspuru-Guzik, Dutol, Love, Head-Gordon, Science 309, 1704 (2005)

* Quantum chemistry, classical heuristics, and quantum advantage,
Garnet Kin-Lic Chan, Faraday Discuss., 2024, doi: 10.1039/D4FD00141A



The origins of quantum computing

Simulafting quantum physics

Yuri Manin

Richard Feynman
1982




The origins of quantum computing

Simulating quantum physics

Richard Feynman
1982

Yuri Manin
. >:“‘. S ;"“.‘ : ".fl‘ e 1 980

Simulating some quantum mechanical

. . . — > Use a quantum one!
effects on a classical computer is unfeasible



The origins of quantum computing

Simulating quantum physics

® 0 . Classical bit can be either in state | 0) or state | 1)

* Qubit can be in a superposition of both states
0
|

® w=alo)+p)=al,|+5

From bitsto ... —> qubits



The origins of quantum computing

Simulating quantum physics

. Classical bit can be either in state | 0) or state | 1)

® 0
* Qubit can be in a superposition of both states
®: w=a|oy+p|)=al|+5|)
From bitsto ... —> qubits

superposition QC

) = |0)
|W>= |()> - |1//)=a|0)+,5|1) —>|l/f>=7|0>+5|1>_/3/\ <|W>= |1>




)

@ 0

|1//)=a‘0)+ﬁ‘1)5a (1)

. Classical bit can be either in state | 0) or state | 1)

e Qubit can be in a superposition of both states

0
+,61

to ... « Measuring the state of the qubit with probability P

P(|l//>= |O>)=}/28Hdp(|l/f>= |1)>=52

yy=a|0)+p|1)

) = |0)

)y =7|0)+5|1)"

) = |1)



Using a quanfum computer

ds a quantum physics simulator

Arbitrary state of its qubits

v
- V) = Zaf\flfz )
/




Using a quanfum computer

ds a quantum physics simulator

Arbitrary state of its qubits A universal quantum computer can solve problems
beyond quantum simulation (e.g. factorisation)

v
—> ‘\Ij> — Z af‘flfQ e fM) > Inputs Measurement
f

‘.
[¥)

4 S—
Two Qubit Gate

\
I

N
H—=

1/

0
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Using a quanfum computer

ds a quantum physics simulator

Arbitrary state of its qubits

v
- |U) = Zaf\flfz---fM> -
/

A universal guantum computer can solve problems
beyond quantum simulation (e.g. factorisation)

Inputs MeaSLirement
|

I’UJ> Two Qubit Gate | H ﬁé
w -
_S |()> l’<>\. an A «— Classical Bit
= |

0) — H [~ XHZH— [v)

t
One Qubit Gate
Billions

Quantum 5, 433 (2021)



Using a quanfum computer

ds a quantum physics simulator

Arbitrary state of its qubits A universal quantum computer can solve problems
beyond quantum simulation (e.g. factorisation)

v
—> ‘\Ij> — Z af‘flfQ e fM) > Inputs Measurement
f
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Quantum 5, 433 (2021)



Using a quanfum computer

ds a quantum physics simulator

Arbitrary state of its qubits A universal quantum computer can solve problems
* beyond quantum simulation (e.g. factorisation)
—> ‘\Ij> — E af‘flfQ . .. fM) - Iniuts MeaSLirement
f Iw) Two Qubit Gate | H /74
2
U TN . .
% £ |O> l'<>‘: <> /74 <« Classical Bit
cC - | i
- : |
T | |0) — H e X Z— [¥)
t
One Qubit Gate
/ Biters Hundreds

We are in the era of the Noisy
Intermediate-Scale Quantum computers:

soon useful for simulation! Quantum 5, 433 (2021)



Quantum computfer fechnologies

Qubit Type

Superconducting

Pros/Cons

Pros: High gate speeds and
fidelities. Can leverage standard
lithographic processes. Among
first qubit modalities so has a
head start.

Cons: Requires cryogenic
cooling; short coherence times;
microwave interconnect
frequencies still not well
understood.

Select Players

rigetti Google IBMQ

{ ors ORC |OAM
unz

A o
Quantum Circuits, Inc Origin Quantum

Trapped lons

Pros: Extremely high gate
fidelities and long coherence
times. Extreme cryogenic
cooling not required. lons are
perfect and consistent.

Cons: Slow gate times/
operations and low connectivity
between qubits. Lasers hard to
align and scale. Ultra-high
vacuum required. lon charges
may restrict scalability.

J IONQ
Q

QUANTINUURNM

U

o"y o !mf.c""'d Universal
% 8 iohics Quantum

Photonics

Pros: Extremely fast gate
speeds and promising fidelities.
No cryogenics or vacuums
required. Small overall footprint.
Can leverage existing CMOS
fabs.

Cons: Noise from photon loss;
each program requires its own
chip. Photons don’t naturally

interact so 2Q gate challenges.

W PsiQuantum ®

XANADU

QUIX_

QUANTUM Computing

Pros: Long coherence times.

ColdQuanta @ <tz s

Silicon
Spin/Quantum
Dots

Strong gate fidelities and
speeds.

Cons: Requires cryogenics.
Only a few entangled gates to-
date with low coherence times.
Interference/cross-talk
challenges.

Atoms are perfect and
consistent. Strong connectivity, COMPUTING ING.
including more than 2Q. External

Neutral Atoms cryogenics not required. atom "‘\I
Cons: Requires ultra-high . computing e’
vacuums. Laser scaling PASOAL
challenging.
Pros: Leverages existing
semiconductor technology.

. Silicon
(inteD) D Quantum
@ diraqg '

QUANTUM QUANTUM
+» MOTION BRILLIANCE

Source: Quantum Computing Modalities -

A Qubit Primer Revisited -

The Quantum Leap (quantum tech.blog)



QFI

HIZATION

Quantum Computfing
for Quantum Chemistry in a Nufshell

The state of the quantum processor
mathematically represents the state of
the molecule

The goal is to find the state of the
molecule for which the energy is minimal

The energy of the molecule needs to be
measured




Challenges in near-term QC

1. Measurement stage is time-consuming
2. Hilbert space is a big space

3. Qubits are a scarce resource

4. Noise biases the results

5. Resource efficient/aware representation

QPTINIZATION
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Challenges in near-term QC

1. Measurement stage is time-consuming
2. Hilbert space is a big space

3. Qubits are a scarce resource

4. Noise biases the results

5. Resource efficient/aware representation

QPTINIZATION




Mapping “the problem” from
to space



 N-electron wave function
‘T>:ZC:|‘I’:> )
¢
. Second—quantized Hamiltonian

— thq qu'l'_ Z (pq|7s) ( paLrs = Ogr pS) ?
P

P-q.1S
 Fermions are indistinguishable particles, qubits are distinguishable
—> we need to account for anti-commutation of fermionic operators in the map!

(a,a,) =0 (ahal}=0 ({a,a}}=s,



Mapping the problem from fermion to qubit space

N-electron wave function

W)=Y e |fur--hifh) Exact for infinite M!
f



P) = 3t |fur- fih)

f
* Trivial interaction of fermionic creation/annihilation operators on ON

&; fM—l"'p+1 0][1.9_1]CO> — (—I)Zf;ofs fM—l"'p+1 1];_1fb>

a | fui- Syer 1];_1...]‘0> =0

&p fM—l“'p+1 1]§9—1ﬁ)> — (_1)21“:3]2 fM—l"'p+1 Oﬁ)—lf()>

él\p fM—l”‘p+1 O]??—If()> = ()




* Trivial translation of fermionic ON vector basis to qubit ON vector basis

|fM_1---f1fo> |qM_1>--- ® |q1> ® |qO> = |qM_1---q1610>

 What about creation/annihilation operators for qubits?



Mapping the problem from fermion to qubit space
Jordan-Wigner mapping

 Use a simple recipe for one-qubit creation and annihilation operators?

0" [1)=0 0" [0)= 1) 0" [1)=1]0) 07 [0)=0



Mapping the problem from fermion to qubit space
Jordan-Wigner mapping

 Use a simple recipe for one-qubit creation and annihilation operators?

0" [1)=0 0" [0)= 1) 0" [1)=10) 07 [0)=0

X

Do not obey the fermionic anti-commutation relations!



 Use a simple recipe for one-qubit creation and annihilation operators?

o*|1y=0 Q*|0)=|1) O [n=10) O ]oy=0

X

Do not obey the fermionic anti-commutation relations!

 Better ansatz? Form operators based on Pauli matrices!

) 1 1
0 = |1)(0] = 2<0x—iay> = (X iY)

1
2

0~ = |0)(1]

. 1 .
(Gx-l-ldy) =5(X+1Y)



Mapping the problem from fermion to qubit space
Jordan-Wigner mapping

 Why are Pauli matrices a suitable choice?

(oY __(o =i\ __(1 0
~\1 0/ "\ o = \0 -1



Mapping the problem from fermion to qubit space
Jordan-Wigner mapping

 Why are Pauli matrices a suitable choice?

Single-qubit quantum gates are 2 X 2 unitary matrices

(oY __(o =i\ __(1 0
~\1 0/ "\ o = \0 -1



 Why are Pauli matrices a suitable choice?

—> Pauli matrices are 2 X 2 Hermitian (unitary) matrices

—> Pauli matrices are involutory: 013 =1Vp € |[x,v,7]

—> Pauli matrices anti-commute: {ap, aq} — 2]51%] Vp,qg € |x,y, 7]

(oY __(o =i\ __(1 0
10/ 7\ oo = \o -1



: : : N+ :
« Because of anti-commutation among Paulis, O~ and o, anti-commute

« Represent action of fermionic operators &g) for index p by acting with Qi on

qubit p and with o, on all qubits with index g < p and with the identity 1 on
the remaining qubits



: : : N+ :
« Because of anti-commutation among Paulis, O~ and o, anti-commute

« Represent action of fermionic operators &g) for index p by acting with Qi on

qubit p and with o, on all qubits with index g < p and with the identity 1 on
the remaining qubits

3= 199171 @ 07 @ 0] = = (X, ® [o02] - i1, ® [0



: : : N+ :
« Because of anti-commutation among Paulis, O~ and o, anti-commute

« Represent action of fermionic operators am for index p by acting with Q— on

qubit p and with ¢, on all qubits with mdex g < p and with the identity 1 on
the remaining qubits

=181 0 01 @ [09] == (X,® [0 - v, @ [GZ@P])



Major drawback of Jordan-Wigner mapping:

that appears in a'” introduces a number

—> non-locality of “parity term [0z® p] P

of extra qubit operations which scale as O(M)!

Example: how does it work for mapping one-electron terms

h = 2 hpqapaq :
Pq



> from qiskit_nature.converters.second_quantization import QubitConverte
fcac = np.zeros((2, 2), dtype=float)
fcac[0] [0] = 1.0; fcac[1l]l[1] = 3.0

h2ac = np.zeros((2, 2, 2, 2), dtype=float)
> one_body_ints = OneBodyElectronicIntegrals(

> two_body_ints = TwoBodyElectronicIntegrals(
qc_ham_qiskit = ElectronicEnergy([one_body_ints, two_body_ints])
fermi_ham = qc_ham_qiskit.second_qg_ops() [0]
fermi_ham.set_truncation(0)
print("Fermionic Hamiltonian", fermi_ham)
qubit_converter = QubitConverter(mapper=JordanWignerMapper())
Hq = qubit_converter.convert(fermi_ham)
print("J-W Qubit Hamiltonian",Hq)

v/ 0.4s

Fermionic Hamiltonian Fermionic Operator
register length=4, number terms=5
1.0 x ( + 0 —0 )
3.0 x ( +1-1)
1.0 x ( +2 -2 )
3.0 x (( +3 - 3)
0]
J-W Qubit Hamiltonian 4.0 x IIII
0.5 x IIIZ
1.5 % IIZI
0.5 x IZII
1.5 % ZIII

o
i
=
2




> from giskit_nature.converters.second_quantization import QubitConverte
fcac = np.zeros((2, 2), dtype=float)
fcac[0] [0] = 1.0; fcac[1l]l[1] = 3.0

h2ac = np.zeros((2, 2, 2, 2), dtype=float)
> one_body_ints = OneBodyElectronicIntegrals(

> two_body_ints = TwoBodyElectronicIntegrals(
qc_ham_qiskit = ElectronicEnergy([one_body_ints, two_body_ints])
fermi_ham = gqc_ham_qiskit.second_qg _ops() [0]

Could we avoid to operate with o, on all qubits g with

q <Pp?

rcrimionic ndiiLLeoridil recrimionic vpcrdLol

register length=4, number terms=5
1.0 x ( + 0 —0 )

+ 3.0 x ( +1-1)

+ 1.0 x ( +2 -2 )

+ 3.0 x ( + 3 -3 )

+ 0]

J-W Qubit Hamiltonian 4.0 x IIII

- 0.5 x IIIZ

- 1.5 x IIZI

- 0.5 x IZII

- 1.5 x ZIII




» Alternative idea to occupation number basis —> parity basis:
Use qubit p to store the parity & of all occupied orbitals up to p

P
S, = mod ZfS,Z
s=0

 Parity of set of orbitals with g < p determines whether &g) introduces a
phase of -1

—> it suffices to only have o, acting on qubit p — 1



» BUT: we cannot represent the creation or annihilation of a particle in qubit g,

: A(i) : : : : :
with Qp since g, stores the parity of all orbitals with index g < p
« Representing for example &; in terms of Q;;L depends on qubit (p — 1):
. qubit (p — 1) isin state |O): act on qubit p with Q;

. qubit (p — 1) is in state | 1): act on qubit p with Q;



Mapping the problem from fermion to qubit space
Parity mapping

 Operator equivalent to Qi In parity basis is P* and a two-qubit operator!

ot = 0F Q |0><0| - 07 ® | 1)(1]

1
= (Xp R Z, | F ti)

p—1



 Operator equivalent to Qi In parity basis is P* and a two-qubit operator!

ot = 0F Q |0><0| - 07 ® | 1)(1]

1
= (Xp 7, | F ti)

p—1

. creating/annihilating a particle in p changes the parity to be stored Iin
qubits with index greater p: apply o, to all qubits g, with kK > p



 Operator equivalent to Qi In parity basis is P* and a two-qubit operator!

ot = 0F Q |O><O| - 07 ® | 1)(1]

1
= (Xp 7, | F ti)

p—1

. creating/annihilating a particle in p changes the parity to be stored Iin
qubits with index greater p: apply o, to all qubits g, with kK > p

= [0 @ by == ([ o) 9 x,87, [ ot1-] @Y)



» Major drawback of parity mapping: k-locality!

0®M —p

» ] ” that appears in 4" introduces a

—> non-locality of “update term [ )

number of extra qubit operations which scale as O(M)!



» Major drawback of parity mapping: k-locality!

0®M —p

» ] ” that appears in 4" introduces a

—> non-locality of “update term [ )

number of extra qubit operations which scale as O(M)!

« Trailing string of o, (J-W) replaced by leading string of o, ...



» Major drawback of parity mapping: k-locality!

0®M —p

» ] ” that appears in 4" introduces a

—> non-locality of “update term [ )

number of extra qubit operations which scale as O(M)!

« Trailing string of o, (J-W) replaced by leading string of o, ...

 Example: how does it work for mapping one-electron terms



> from giskit_nature.converters.second_quantization import QubitConverter
fcac = np.zeros((2, 2), dtype=float)
fcac[0] [0] = 1.0; fcac[1l][1] = 3.0

h2ac = np.zeros((2, 2, 2, 2), dtype=float)
> one_body_ints = OneBodyElectronicIntegrals(

> two_body_ints = TwoBodyElectronicIntegrals(
qc_ham_giskit = ElectronicEnergy( [one_body_ints, two_body_ints])
fermi_ham = gc_ham_giskit.second_qg_ops() [0]
fermi_ham.set_truncation(0)
print("Fermionic Hamiltonian", fermi_ham)
qubit_converter = QubitConverter(mapper=ParityMapper())
® = qubit_converter.convert(fermi_ham)

print|{(""Parity Qubit Hamiltonian”,qu

v/ 0.4s

Fermionic Hamiltonian Fermionic Operator
register length=4, number terms=5
1.0 x ( +_0 — 0 )
3.0 x ((+1-1)
1.0 x ( + 2 -2 )
3.0 x ( + 3 -_3)
0]
Parity Qubit Hamiltonian 4.0 % IIII
0.5 x IIIZ
1.5 x 1177
0.5 x IZZ1
1.5 x ZZII

+
+
+
+




> from giskit_nature.converters.second_quantization import QubitConverter
fcac = np.zeros((2, 2), dtype=float)
fcac[0] [0] = 1.0; fcac[1][1] = 3.0

h2ac = np.zeros((2, 2, 2, 2), dtype=float)
> one_body_ints = OneBodyElectronicIntegrals(

> two_body_ints = TwoBodyElectronicIntegrals(
qc_ham_qgiskit = ElectronicEnergy([one_body_ints, two_body_ints])
fermi_ham = gc_ham_giskit.second_qg_ops() [0]
fermi ham.set truncation(0)

Could we avoid to to operate with o, on all qubits g with
q > p?

register length=4, number terms=5
1.0 x ( +_0 — 0 )

+ 3.0 x ( +1-1)

+ 1.0 x ( +2 -2 )

+ 3.0 x ( +3 -_3 )

+ 0]

Parity Qubit Hamiltonian 4.0 % IIII

- 0.5 x IIIZ

- 1.5 x II1ZZ

- 0.5 x IZZ1

- 1.5 x ZZII




Mapping the problem from fermion to qubit space
Notes on other mappings

» Major drawback of parity and J-W mapping: t-locality which is also referred
to as Pauli weight

» Other more elaborate mappings exist which scale as O(log, M)
[Bravyi-Kitaev —> “combines ideas” of J-W and parity mappings] or
even up to O(log; M)



qubit_converter = QubitConverter(mapper=JordanwWignerMapper())
Hq = qubit_converter.convert(fermi_ham)
print("J-W Qubit Hamiltonian",Hq)

qubit_converter = QubitConverter(mapper=ParityMapper())
Hg = qubit_converter.convert(fermi_ham)

print("Parity Qubit Hamiltonian",Hq)
®

qubit_converter = QubitConverter(mapper=BravyiKitaevMapper())
Hq = qubit_converter.convert(fermi_ham)
print("Bravyi-Kitaev Qubit Hamiltonian",Hq)

v/ 0.7s

J-W Qubit Hamiltonian 4.0 x IIII
0.5 x IIIZ
1.5 x IIZI
0.5 x IZII
1.5 x ZIII
Parity Qubit Hamiltonian 4.0 *x IIII
- 0.5 x IIIZ
- 1.5 % II1ZZ
- 0.5 x IZZI
- 1.5 % ZZII
Bravyi-Kitaev Qubit Hamiltonian 4.0 x IIII
0.5 x IIIZ
1.5 x 1177
0.5 x IZII
1.5 x ZZ7Z1




 Major drawback of parity and J-W mapping:

» Other more elaborate mappings exist which scale as O(log, M)
[Bravyi-Kitaev —> “combines ideas” of J-W and parity mappings] or
even up to O(log; M)

 Customised (tree-based) mappings tailored to QC hardware layout are also
possible!



Mapping the problem from fermion to qubit space
Notes on other mappings

« Common outcome of mappings: H . is expressed as a sum of Pauli strings P,

R 1
— T . T A
He o Z hpqapaq T 9) Z gpqrsapa”asaq . He —_ Z CkPk
P4 Pqrs I



 The Hamiltonian is given as a linear combination of Pauli strings

H, = Z ci Py Each term is a product of local operators £}, = ®s_o Ok .(s)
k
* \We can calculate expectation values on the quantum computer

|lP>=ZCf fut1--fifo) (W[ A, |®)= ) (V| P |¥)
f

k



 The Hamiltonian is given as a linear combination of Pauli strings

H, = Z ci Py Each term is a product of local operators £}, = ®s_o Ok .(s)
k
* \We can calculate expectation values on the quantum computer

|lP>=ZCf fut1--fifo) (W[ A, |®)= ) (V| P |¥)
f

k

Cannot even be written down “Easy” on a qguantum computer: only
on a classical computer requires measuring Pauli strings



Calculating the energy

On d qudanium computer

 The Hamiltonian is given as a linear combination of Pauli strings

A\

H, = Z c.P, < FEach ter
k
* \We can calculate expectat

|‘P> — Zcf fM—l---flfo>
f

l

Cannot even be written down “‘Easy” on a quantum computer: only
on a classical computer requires measuring Pauli strings

| operators P, = @Y O (s)

ntum computer

(W] P | W)
k




Variational optimisation with the
Variational Quantum Eigensolver




Variational optimisation with the
Variational Quantum Eigensolver

New lteration

.. which is just one example, many algorithms exist, not to mention fault-tolerant ones...



Solving the problem

The Variational Quantum Eigensolver

Quantum Hardware

* Prepare some quantum state using a
so-called variational form (ansatz)




Solving the problem

The Variational Quantum Eigensolver

* Prepare some quantum state using a
so-called variational form (ansatz)

* Gates (unitary rotations) in the ansatz
have free parameters {0}

Quantum Hardware

P(0) >



Solving the problem W(d) >

The Variational Quantum Eigensolver

Quantum Hardware

* Prepare some quantum state using a
so-called variational form (ansatz)

P
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Q
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7y
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Apparatus

* Gates (unitary rotations) in the ansatz
have free parameters {0}

 For each value of the parameters the
resulting state has some mean energy

Va\

(E) = <‘P(§) H, ‘P(é)> > Eground




Solving the problem W(d) >

The Variational Quantum Eigensolver

Quantum Hardware

* Prepare some quantum state using a
so-called variational form (ansatz)

pr—
C
Q
Q
| -
ad
7y
0
QD
=

Apparatus

* Gates (unitary rotations) in the ansatz
have free parameters {0}

New lteration

 For each value of the parameters the Parameters
resulting state has some mean energy

Va\

(E) = <‘P(§) H, lI’(5)> > Eground

* Find the ground state variationally:
minimising over the parameters {6’}




Measuring the energy

in a VOE simulation

<‘P‘ﬁe _ch<\P‘Pk‘qj>
ﬂn@‘/ + o % :
+ FY: l
R X
R X
%/&Y -

Every Pauli string evaluated

+ R X independently through repeated
RZ % RY measurements

/X' 2



Measuring the energy

in a VOE simulation

—R2 - (P| A, |¥) =) c(P| P |P)
RY 4 £ N 1 k
RX RE |

< X

Every Pauli string evaluated

R X + R X independently through repeated
2y + RZ ; % RY measurements
+ RY ) Repeat each many times to
Rz — .
2 estimate the mean (‘P| P, |‘P)




Solving the problem?

The Variational Quantum Eigensolver

Sounds good, BUT

e How do we know the ansatz contains
the ground state?

 How do we find the corresponding
parameters?

 How efficient is the whole approach?

 \WWhat about the noise?

| W(9) >

Quantum Hardware

New lteration

P
-
£
Q
| -
)
7y
0
4}
=

Apparatus

(E) = (%(0)

‘P(Q)> 2 Eground



Solving the problem

The Variational Quantum Eigensolver

* There are mainly two broad strategies in
circuit ansatz design

* physically motivated ansatze

* hardware heuristic ansatze
—> parametrized circuits comprising
single-qubit rotations and entangling
blocks chosen to take advantage of
specific quantum hardware capabilities

P(0) >

Quantum Hardware

New lteration

pr—
C
Q
Q
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QD
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Apparatus

(E) = (%(0)




Solving the problem W(d) >

The Variational Quantum Eigensolver

Quantum Hardware

* There are mainly two broad strategies in
circuit ansatz design

P
-
£
Q
| -
ad
7y
O
4}
=

Apparatus

New lteration

* physically motivated ansatze

 hardware heuristic anséatze B rqemiers
—> parametrized circuits comprising
single-qubit rotations and entangling
bloclfs. chosen to take advantage of (E) = <‘P(5) 23 ‘P(@)) > Eground
specific guantum hardware capabillities




e UCCSD ansatz has the form

fl—z Za(aa—a )

Weef) with
T, = Z 740 = Z a’ b a,a; —a;afabaa)

Vo N A\

1,],a,b 1,],a,b

« Commonly approximation: Trotterize unitary to first order

lPtUCCSD) — H e’ H ‘Pref>

celia}l delijab}

—> Low-order trotterized form may fail to reach chemical accuracy
—> Large number of exponential factors prohibits preparation on quantum processors



 The ADAPT-VQE algorithm grows ansatze by appending one unitary at a time to a trial
state

 Requires to

» a priori define an operator pool & = { P;}, a collection of antihermitian generators
—>17;and T A‘;b in UCCSD

* choose a reference state calculate (HF or anything reasonable)

oL

- i <\p(k) e~ Ol 0P \y(k)> — <\p(k) [H, P} \p(k)>

0,=0 i 0=0
* The operator with the largest gradient norm is appended to the ansatz




Choosing an ansatz - ADAPT-VOE

2) Operator pool

5) Measure gradients @
oE(™)

r _ J (g, ~G ArS , ATS ArS | AIS
Am= {(Tp'l- Tﬁ) ! (TPQ+TI_7C_I)' (TP@Y * TF-’Q)} 4) _ n [T A (n)
06, <l// A Ay > Yes
7))
D (n)
+— aE ~oo
- S T < () |[H, A,] ¢<n)>
Select operators D
o 6) Converged?
0\ = | HF from pool S
) = [4F) i 3 :
Q 8}
No
(n) A
385 _ < s |14, AN]‘ l//(n)> Select operator
N with largest gradient

8) VQE: Re-optimize all parameters 7) Grow ansatz

(n+1) _ HF | o—0,A 0 A a0 A 0.A, |  HF 2(n+1) (7 | (n+1)\ _ 40A , (n)
o i ] s 9 g0) | T~ e )~ |9

Nat. Comm., 10, 3007 (2019)



Solving the problem?

The Variational Quantum Eigensolver

Sounds good, BUT

 How do we know the ansatz contains
the ground state”

 How do we find the corresponding
parameters”?

 How efficient is the whole approach?

 \WWhat about the noise?

P(0) >

Quantum Hardware

New Iteration

Update vy
Parameters
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3
)
0
5

=

Apparatus

(E) = <‘P(5) H




Solving the problem? P(6) >

The Variational Quantum Eigensolver

Quantum Hardware

quantum advantage through resource estimation:
n the variational quantum eigensolver

Apparatus

——
=
:
0
—
-
v
(0
cu

=

Jérome F. Gonthier,! Maxwell D. Radin,! Corneliu Buda,?
Eric J. Doskocil,? Clena M. Abuan,® and Jhonathan Romero!

1Zapata Computing, Inc., 100 Federal St., Boston, MA 02110, USA

New lteration

Molecule HzO C02 CH4 CH4O C2H6 C2H4 C2H2 C2H6O C3H8 C3H6 C3H4

N,; 8 |16 | 8 | 14 | 14 | 12 | 10 | 20 | 20 | 18 | 16 . Update y
N, |104 |208|104| 182 | 182 | 156 | 130 | 260 | 260 | 234 | 208 Parameters

TABLE IV. Estimated runtimes ¢ in days for a single energy evaluation using the number of measurements M from extrapolated

arXiv: 2012.04001 (Ey=(¥©O)|H, |¥©O) > Eground




Solving the problem?

The Variational Quantum Eigensolver

e How do we know the ansatz contains
the ground state?

 How do we find the corresponding
parameters”?

 How efficient is the whole approach?

 \WWhat about the noise?

| W(9) >

Quantum Hardware

New lteration

(E) = (%)

Efficient measurement strategies are required!

Noise mitigation is crucial!

—
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Apparatus




Molecular properties / Dynamical correlation

The Variational Quantum Eigensolver

Quantum Hardware

» Expectation values of one-electron O, and

two-electron 52 operators can be
straightforward obtained from optimal VQE

(0)= S on{ia)

P
-
£
Q
| -
)
v
0
4}
=

Apparatus

New lteration

<02> — Z Opqu < A;;&Iél\sél\q> | Pgn‘a\‘r'.hwe{e.rs
 Higher-order RDMs ... g : |
—> CASPT2/NEVPT2, response theory, ...

= (p(@ 9)) >
* quantum equation-of-motion ... (E) <lP(6’) H, ‘P(Q)) —Eground



Quantum computers without
dlgorithms are useless machines

With proper algorithms we can make quantum computers work

We need to know how to measure

We need to mitigate errors and correct for them
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