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Content of the lectures

 CASCI

 MCSCF/CASSCF

 MR Dynamical Correlation Approaches

Past

 Density Matrix Renormalisation Group

Present: “Sample” CI coefficients using an advanced optimisation algorithm

Road ahead: Beyond “classical quantum chemistry”

 Quantum Chemistry on Quantum Computers

 Concepts



First example: Things to learn 
from H2 …  



Concepts



Potential energy curve of H2



Potential energy curve of H2

Full Configuration Interaction (FCI)



A quick reminder on CI
 Expand wave function as a linear combination of Slater determinants

 

 Orbital coefficients are fixed

 The parameters  are chosen to minimise the energy

 Leads to eigenvalue problem 

 If all determinants {ϕ} of a given basis are included, we solve the 
Schrödinger equation projected onto the basis —> full CI (FCI)

 

 ∣Ψ  ⟩=∑ 𝑐 ζ  ∣Φζ  ⟩

H c=E cwith (H )ζ η=⟨ϕζ∣Ĥ∣ϕη⟩



Potential energy curve of H2

Two neutral hydrogen atoms



Potential energy curve of H2

(Restricted) Hartree-Fock (RHF)



A quick reminder on RHF
 Minimize the energy of one Slater determinant or a symmetry/spin-

adapted combination (CSFs) of Slater determinants

 Individual unoccupied orbitals have a limited meaning
(HOMO/LUMO —> Koopman’s theorem)





δσ 1α
=∣α ⟩ ⟨σ1∣α ⟩
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Near-degeneracies give rise to static correlation!
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Near-degeneracies give rise to static correlation!
Better ansatz?
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Multi-configurational wave function

𝜑 1𝜎 𝑔
( 𝒓 )= 1

√2
(𝑠 𝐴 ( 𝒓 )+𝑠 𝐵 ( 𝒓 ))

Bonding orbital
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Multi-configurational wave function

𝜑 1𝜎 𝑢
( 𝒓 )= 1

√2
(𝑠 𝐴 ( 𝒓 )−𝑠 𝐵 ( 𝒓 ))

Anti-Bonding orbital

𝜑 1𝜎 𝑔 H H

𝜑 1𝜎 𝑢 H H











The Past …
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Complete Active Space CI (CASCI)
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Complete Active Space CI (CASCI)
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—>  active orbitals

“CAS()”

CASCI is FCI in the active space!

How does it work for our H2 example? 

∣Ψ CASCI ⟩=∑ 𝑐 ζ ∣Φζ ⟩



CASCI for H2
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CASCI for H2

Residual
error!

Multi-configurational wave function necessitate a re-optimisation of the orbitals!

MO basis of CASCI: HF orbitals!



CASCI for H2

Residual
error!

Multi-configurational wave function necessitate a re-optimisation of the orbitals!

Multi-Configurational Self-Consistent-Field (MCSCF) approach

MO basis of CASCI: HF orbitals!



CASCI / MCSCF for H2

Residual
error!



MCSCF: concepts and 
purpose



MCSCF - concepts I
 Introduce as small number of (active) orbitals: about 10-20 with 

occupation numbers  η allowed to vary

 Active orbitals with occupations: 

 Select configurations (many-particle basis states) to include

 Form of the wave function ( —> SD, ONVs or CSFs):

 OPTIMISE the orbitals and the CI coefficients, 

∣Ψ ⟩=∑ 𝑐 ζ ∣Φζ ⟩

𝑐 ζ

0≪η≪2



MCSCF - concepts II
 Simplify general MCSCF ansatz by including all configurations 

generated by allocating all active electrons to these active 
orbitals: 
FCI in the active space (<—> CASCI!)

 Picking a proper set of active orbitals is still required (can be 
automated too) but configuration generation is automated

 MCSCF optimisation based on this simplification is coined as 
complete active space self-consistent field  — or simply CASSCF



MCSCF - purpose
 MCSCF does not describe the short-range correlation contributions 

that arise as                 , that is dynamical correlation

 MCSCF aims at including non-dynamical correlation that arises from
(i) configurational near-degeneracies and/or
(ii) gross deficiencies in the RHF wave function

 Includes near-degenerate orbitals to account for static correlation

 Will in general not describe the complete correlation energy!

r12→0



CASSCF: concepts,  
optimisation and limitations



CASSCF - concepts
 Definition of the orbital spaces follows from 

CASCI: inactive, active and secondary 

 The active orbital space should include:

 all orbitals where the occupation number  
η changes significantly during a process 
(reaction, excitation, ionisation, …)

 orbitals where 0 « η « 2

 can be automated (overlap, orbital 
entropy, perturbative estimates, …) but do 
not underestimate “chemical intuition” 
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electrons

 L active spin orbitals
—>  L = L/2 active 

orbitals
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orbitals
“core”

Virtual spin-
orbitals

“secondary”CAS(N, L)



CASSCF - scaling
 The number of Slater determinant (or 

ONVs) {ϕ} scales for 2k electrons in 2k 
orbitals as
 

 Largest calculation with standard CI: 
CAS(24,24), practical limit about 
(20,20)!

 Larger CAS spaces require more 
advanced approaches (—> see The 
Present!)

{Φ }=(2𝑘𝑘 )
2

2 4
4 36
6 400
8 4.900

10 63.504
12 853.776
14 11.778 .896
16 165.636 .896
18 2.363 .904 .260
20 34.134 .777 .856
24 7.312.459 .672.336



CASSCF - active orbital spaces

 Sometimes simple and intuitive like for H2: (σg, σu)2 —> CAS(2,2)

 Ground state of N2 (N=1s22s22p3) requires 2p orbitals: (σg, πu, πg, σu)6—
> CAS(6,6)

 C2/Be2: require inclusion of 2s/2p shells because of near-degeneracies!

 Picking CAS for main-group dimers can be straightforward… but does 
not necessarily have to be the case

 Transition metal dimers are far from trivial! (—> see “The Present”)

Simple diatomics



CASSCF - active orbital spaces

 In general, including the full valence space is not an option (too many e-/o)

 Simple guidelines:

 Breaking a C-H or C-C bond in a hydrocarbon —> include (σ σ*)2

 Spectroscopy/reaction of aromatic/conjugated -systems —> include (π π*) 

 If even the minimal CAS reaches beyond (20,20), consider alternative 
approaches like DMRG, HCI, FCIQMC, selective CI, stocastic CI, …

Polyatomic molecules



CASSCF - targeting individual states

 Goal: target individual excited states which are not the lowest states 
wrt spin and/or spatial symmetry

 Challenges:

 Requires convergence of optimisation algorithm to a saddle point

 Root flipping: excited state may become the lowest state in CI along 
a path

 Converged MCSCF/CASSCF wave functions for two roots of the same 
symmetry (spatial/spin) are in general NOT orthogonal!
—> use state-interaction to calculate properties: SOC, NAC, …

State-specific approach



CASSCF - targeting an ensemble of 
states

 Goal: target an ensemble of states simultaneously wrt spin and/or 
spatial symmetry

 Introduce a weighted ensemble {M}ω of the energies of  M states:

 Each state in  {M}ω will have identical MOs but different CI 
coefficients – not variational

 Challenge: MOs in different states may be very different 
—> may require larger CAS to ensure smooth convergence 

State-average approach

𝐸 𝑆𝐴= ∑
𝑖 =1

𝑀

𝜔 𝑖 𝐸 𝑖



 Example: consider an SA-CAS(2,2)SCF calculation of ethylene (C2H4) 
for the singlet (S=0) ground (“N state”) and lowest excited state (“V 
state):

 CAS: (πu πg)2 

 Character of N state: |ψ⟩

 Character of V state: 

 N and V state —> different spatial extents (= 1.7 / 9.1)

 Cannot be described by a single set of  π orbitals!

State-average approach

CASSCF - targeting an ensemble of 
states



 Wave function ansatz (note change of notation :

Determine the MO and CI coefficients using the variational principle 
(normalisation!):

 Indices:    

Concepts
CASSCF - Optimisation of the wave 
function

0
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 MOs  are orthonormal —> unitary transformation  ensures 
orthonormality

 Write  as  with  , that is  is anti-hermitian

 Transformation of creation operators:

 CAS —> we only need the following rotation parameters: {}, {}, {}

Unitary transformations of MOs

CASSCF - Optimisation of the wave 
function
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 CI vector(s) are normalised:

 Complementary space  orthogonal to : 

 Define anti-hermitian operator :

 Unitary transformation of  such that remains normalised

Unitary transformations of CI vectors
CASSCF - Optimisation of the wave 
function
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 Resulting wave function ansatz:

 “Double”-exponential parametrisation with parameters 

 Energy function with parameter space 

Concepts

CASSCF - Optimisation of the wave 
function
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 Vary parameters  and  such that energy 
becomes stationary:
 

 Leads to a set of nonlinear equations that must be solved iteratively

 In the following, we examine the Newton-Raphson method for CASSCF 
optimisation 

Optimal energy
CASSCF - Optimisation of the wave 
function

∂𝐸
∂𝑇 𝑝𝑞

=0
∂𝐸
∂𝑆 𝐾 0

=0





 Approximation to stationary point by finding stationary point of :

 

 For the current , compute new gradient and Hessian

 Continue iterative procedure until 

 Note:

 Approximating  with  is only valid for small 

 Quadratic convergence for small 

Newton-Raphson method - concepts II
CASSCF - Optimisation of the wave 
function

∂𝐸 (2)

∂ 𝑝 𝑖
=0→𝐠 +𝐇𝐩=𝟎→𝐩=−𝐇 −𝟏𝐠







 DALTON: NR and other optimization techniques —> state-specific 
MCSCF

 OpenMolcas: no  couplings —> state-specific + state-average MCSCF

 MOLPRO: second-order optimisation —> state-specific + state-average 
MCSCF

 ORCA: second-order optimisation —> state-specific + state-average 
MCSCF

 pySCF: quasi-second order —> state-specific + state-average MCSCF

 …

Code availability and capabilities
CASSCF - Optimisation of the wave 
function



Dynamical electron correlation 
combined with static correlation



 GOAL: treat dynamical correlation in combination with MCSCF wave 
function

 simultaneously (diagonalize-and-perturb)

 a posteriori (diagonalize-then-perturb)

 Should preferably be both size-extensive and size-consistent

 size-extensive: energy scales linearly with number of particles N

 size-consistent: 

 Should allow to treat an ensemble of states on an equal footing

Wishlist
Dynamical correlation combined with 
MCSCF



 Multi-reference CI:

 Based on excitations out of a MC state

 Variational but not size-consistent/size-extensive

 Multi-reference perturbation (MRPT2) theories: CASPT2, NEVPT2, …

 Based on (internally contracted) excitations out of a (or several) MC state

 Differ in form of       and form of wave function corrections

 (Nearly) size-extensive

 MRCC: less developed but most rigorous!

 post-MCSCF on-top pair-DFT correction (MC-pDFT)

 Requires specialised DFAs

 Works for SS and SA MC reference wave functions

 srDFT-lrMCSCF:

 Requires specialised DFAs

 Allows a simultaneous treatment of static and dynamic correlation

A not-so-complete summary …

Dynamical correlation combined with 
MCSCF

Ĥ 0
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