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A reminder - HF and CI

Hartree-Fock

Minimize the energy of one Slater determinant or a
symmetry/spin-defined combination of Slater determinants

The individual unoccupied orbitals have a limited meaning

CI: Configuration Interaction

Expand wave function as a linear combination of Slater
determinants |0〉= ∑I CI |SDI〉
The orbitals are fixed

The parameters CI are chosen to minimize the energy

Leads to eigenvalue problem HC = EC,HIJ = 〈SDI| Ĥ |SDJ〉
If all determinants of a given basis is included, the Schrödinger
equation projected on the basis is solved - full CI (FCI)

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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Molecular Orbitals for H2
RHF

The molecule

HA HBR

Groundstate in a minimal basis: (1sA,1sB)

MOs defined by symmetry:

1σg = Ng(1sA +1sB) 1σu = Nu(1sA−1sB).
Ng and Nu are normalization constants.

Closed-shell RHF configuration 1σ2
g ,

ΦRHF = |1σgα1σgβ | (a+1σgα
a+1σgβ

|vac〉).
“restricted HF” (RHF) wave function (proper eigenfunctions of
spin and spatial operator).

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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Molecular Orbitals for H2
RHF, Ψ = ΦRHF = |1σgα1σgβ | (a+1σgα

a+1σgβ
|vac〉)

At equilibrium

ΦRHF is a good approximation to the exact wave function.

R→ ∞

Correct/exact wave function:
Φcov =

1√
2
(|1sAα1sBβ |+ |1sBα1sAβ |)

1σg→ 1√
2
(1sA +1sB)

ΦRHF→
1
2 (|1sAα1sBβ |+ |1sBα1sAβ |+ |1sAα1sAβ |+ |1sBα1sBβ |) ,
Unphysical 50:50 mixture of “covalent” and “ionic” terms.

Conseqence of the electrons in HF do not correlate the motion

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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Molecular Orbitals for H2
RHF

Potential curves using RHF and FCI for H2, cc-pVQZ basis
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Molecular Orbitals for H2
UHF

Orbitals and wave function(Coulson and Fischer-Hjalmars)

MOs are not symmetry adapted.

ψ1 = N(1sA +λ1sB),ψ2 = N(λ1sA +1sB).

ΦUHF = |ψ1ψ2|.
Not an eigenfunction of Ŝ2.

λ =?

Optimize energy with respect to λ at each value of R.

Near Re λ = 1, whereas as R→ ∞, λ → 0.

Φλ for optimum λ is an example of an unrestricted
Hartree-Fock (UHF) wave function.

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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Molecular Orbitals for H2
UHF

Potential curves using UHF, RHF and FCI for H2, cc-pVQZ basis
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Molecular Orbitals for H2
UHF

Advantages

Wave function and energy at dissociation: dissociates to two
H atoms.

Wave function becomes RHF wave function around
equilibrium → good approximation here.

Disadvantages

Does not display inversion symmetry → symmetry-broken
approximation.

ΦUHF is an eigenfunction of Ŝz but not of Ŝ
2 → spin-broken

approximation.

Large errors in region where bonds are broken.

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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The symmetry problem: to break or not to break
Symmetry and HF

Do worry-restrict

Argument: symmetry-properties are important, so keep them.

Once a symmetry property is lost, it may be hard to regain it.

Do not worry- unrestricted

We are making so many approximations, so why worry?

(Life is too short for symmetry adaptation.)

As correlation is added, symmetry will be recovered.

Gives a very simple wave function - a single determinant.

Projected and extended Hartree-Fock

Project on correct symmetry (Projected HF) and perhaps
reoptimize (Extended HF). Recent work by G. Scuseria.

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19



H2 UHF MCSCF CAS MCSCF examples Excited Extensions of CAS Optim RASSI MR methods CASPT2

The symmetry problem: to break or not to break
UHF in practice

UHF is cheap and straightforward. Deficiencies are easy to
monitor (look at

〈
S2
〉
).

Doubles the number of parameters compared to RHF. Not a
big problem in UHF, but increases the work in correlated
calculations built on UHF.

Loss of spin and spatial symmetries (corrected as correlation is
introduced).

Cannot do low-spin biradicals, etc.

Cannot do general excited states.

Possible bifurcations and non-analytic behaviour of potential
curves and surfaces.

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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MCSCF
Introduction

The Multi configurational Self Consistent Field Method

Introduce a small number of orbitals (active orbitals), say 10
-20, where the occupation are allowed to vary.

The active orbitals are those which (for some geometry ) has
occupation numbers significantly larger than 0 and smaller
than two.

Select the configurations that will be included.

Form of wave function:
∣∣0̃〉 = ∑I CI

∣∣Ĩ〉 where |I〉 are Slater
determinants (ONV’s) or configuration state functions.

Optimize the orbitals and the CI coefficients CI.

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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MCSCF
Introduction

A choice of the configuration spaces: CASSCF

First simplifying assumption: we will choose a subspace of the
MOs, the active space, from which all configurations will be
built.

Then include all configurations generated by allocating
electrons to these orbitals: a full CI in the active space.

We still have to choose the active orbitals, but then
configuration generation is automatic.

A nice naive approach would be the valence AOs for all
atoms, but this quickly gets very large. . .

MCSCF optimization using this sort of complete active
space (CAS) — a CASSCF calculation — is ’easy’

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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MCSCF
Introduction

What can be expected from MCSCF? (correlation)

MCSCF does not describe the short-range terms that arise as
r12→ 0: dynamical correlation.

(Convergence of dynamical correlation in an orbital-based
expansion requires huge orbital-expansions.)

MCSCF includes the nondynamical (or “static”) correlation
that comes from configurational near-degeneracies or from
gross deficiencies in the RHF wave function.

(Static correlation is converged if the near-degenerate orbitals
are included)

Aims at describing part of correlation energy that changes,
not the complete correlation energy

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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The CASSCF method

Simple to define

Number of orbitals (per symmetry) and number of electrons
in the active space.

There is usually also a number of double occupied orbitals:
inactive orbitals.

The active orbital space

Should include all orbitals where the occupation number
changes significantly during a process (like a reaction,
excitation, ionization), or where the occupation number differs
significantly from two or zero.

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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The CASSCF method
The Orbital Spaces for CAS Wave Functions

Inactive, active, and secondary orbitals

Inactive Orbitals

Active Orbitals

Unoccupied Orbitals

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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The CASSCF method
Our H2 cas

2 electrons in 2 active orbitals

Φ0 = cg
∣∣1σg1σg

∣∣+ cu
∣∣1σu1σu

∣∣
Both CI coefficients and orbitals are optimized.

2 in 2 CAS.

Describes wave function well both at equilibrium and at
dissociation.

Well defined spatial and spin symmetry.

More complicated to optimize than UHF.

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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The CASSCF method
Our H2 cas

Potential curves using UHF, RHF, CAS 2in2 and FCI for H2,
cc-pVQZ basis
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The CASSCF method
The size of the configuration expansion

Number of Slater determinants (aka ONV’s) for 2k electrons in 2k
orbitals
2 4
4 36
6 400
8 4.900

10 63.504
12 853.776
14 11.778.896
16 165.636.896
18 2.363.904.260
20 34.134.777.856
24 7.312.459.672.336

# SD’s =

(
2k
k

)2

For large k: # SD’s = 16k

kπ

Adding one Cr atom (2k=6) ∼ 18
years of computer development

Standard CI: largest calc: 24 in 24,
practical: 20 in 20

DMRG and Monte Carlo CI allow
larger spaces.

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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The CASSCF method
Choosing active spaces

Simple diatomics

Sometimes the problem seems and is simple: H2 ground-state
potential curve will need (σg,σu)

2, or the two 1s orbitals, as
the active space.

Bigger diatomics seem similarly easy: N2 ground state will
need (σg,πu,πg,σu)

6 or the 2p orbitals.

C2 will need the 2s orbitals as well, because of the 2s/2p
near-degeneracy in C atom.

F2: (σg,σu)
2 (the bonding/antibonding pair) and

(σg,πu,πg,σu)
10 gives only a qualitative result (bonding. . . ).

The 3p orbitals are needed!

Even diatomics are not straightforward.

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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The CASSCF method
Choosing active spaces

A bit on polyatomic molecules

In most polyatomics, the full valence space is too large.

Identify the orbitals involved in the process.

Spectroscopy of C6H6: use the six π MOs.

Breaking a CH or CC bond in a hydrocarbon: use σ ,σ∗

May have to refine this choice (we will see how). Clearly very
far from a black-box approach!

Even larger active spaces

More than about 20 in 20 is very demanding.

Consider alternative expansions, RAS, GAS.

Or alternative ways for FCI: DMRG, Monte Carlo CI.
P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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Examples of CASSCF calculations
The N2 ground state
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P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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Examples of CASSCF calculations
The Cr2 ground state

MCSCF vs accurate potential curve
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Wave function is actually rather accurate..

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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Examples of CASSCF calculations
N2 excitation energies (eV)

MCSCF MCSCF(av) accurate
3Σ+

u ← 1Σ+
g 7.91 7.76 7.57

1Σ+
u ← 1Σ+

g 11.36 11.15 10.32

3Σ+
u and 1Σ+

g dissociate to 4S+ 4S; 1Σ+
u dissociates to 2D+ 2D.

Differential dynamical correlation error.

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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Examples of CASSCF calculations
M(CO)n binding energies

Dissociation
M(CO)n→ M+nCO.

For Ni(CO)4, Fe(CO)5 and Cr(CO)6 CASSCF predicts very
little binding (about 100 kJ/mol) compared to accurate
results of 550–650.

Bond lengths too long.

In fact, much of the CASSCF binding comes from basis set
superposition error even in very large basis sets!

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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Examples of CASSCF calculations
The Mn4O5Ca complex using DMRG

CAS with 44 electrons in 35 orbitals

The first detailed investigation into the bonding and oxidation
states

Yanai et al, Nature Chem. p 660, 5 (2013)

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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MCSCF Calculations on Excited States
Separate calculations on the individual states

Problems

Calculations on states that are not the lowest of their spin and
spatial symmetry are more difficult. . .

1 Convergence to a saddle point (normally the Hessian has n−1
negative eigenvalues in state n).

2 Root flipping may occur- the excited state become the lowest
root in the CI

3 Converged MCSCF wave functions for two roots of the same
symmetry are in general not orthogonal.

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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MCSCF Calculations on Excited States
Separate calculations on the individual states

Root flipping, example: LiH

Ground state: c11σ22σ2 + c21σ23σ2 (X1Σ+),
excited state: 1σ22σ13σ1 (A1Σ+).

A

A

X

X

MOs

optimized

MOs

optimized

for X state for A state

Orbitals for the excited state differs
very much from the ground state
orbitals → excited state becomes
lowest state

Can be handled by methods using
the complete Hessian

However, the upper energy
property is lost for the excited state

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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MCSCF Calculations on Excited States
State-averaged MCSCF

Purpose

Obtain orbitals that describe several states

Procedure

Introduce a (weighted) average of the energies of M states:
Eaver = ∑

M
I=1 ωIEI

States will have identical orbitals- but different CI coefs.

A standard single state program is easily modified to perform
state-averaged MCSCF calculations

Problem

1 MOs in different states may be very different!

2 May therefore require large active spaces
P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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MCSCF Calculations on Excited States
State-averaged MCSCF

An Example: N,V, states of C2H4

Simplest choice πu,πg with two active electrons.

N state: C1(πu)
2 +C2(πg)

2

V state: (πuπg)(S=0)

For the ground (N) state: 〈πg|z2 |πg〉= 1.69

For the excited (V) state: 〈πg|z2 |πg〉= 9.13

A single πg MO cannot do both jobs! At least two πg-orbitals
are needed (and the V state is actually more difficult than
this).

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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Extensions of the CASSCF method

The RAS construction: Three active orbital spaces

RAS1 orbitals: Max number of holes

RAS2 orbitals: nocc varies

RAS3 orbitals: Max number of electrons

Many type of CI expansions within a common framework.

Inactive Orbitals

RAS 1 Orbitals

RAS 2 Orbitals

RAS 3 Orbitals

Unoocupied Orbitals

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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The GASSCF method
Some further developments of active spaces

The Generalized Active Space

Allows an arbitrary number of active orbital spaces

Allows arbitrary types of occupation restrictions

An American cousin is ORMAS( occupation restricted
multiple active spaces)

It is all right now, in fact it is a GAS
Jagger/Richards

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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Common aspects of the RASSCF and GASSCF methods

Advantages

Much larger number of active orbitals may now be employed

Expansions that are tailored a given problem may be devised

Part of the dynamic correlation may be calculated

Disadvantages

Dynamic correlation is not obtained with high accuracy - an
active space of valence orbitals + 1s1p1d per (light) atom
recovers about 70 % of correlation energy

Convergence of the optimization procedure is typically much
slower due to strong coupling between CI and orbital changes

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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Optimization of MCSCF Wave Functions

The wave function to be optimized∣∣0̃〉= ∑m |m̃〉cm

The optimization problem

Determine the MOs and the MC coefficients using the
variational principle

δE = δ ( 〈0̃|Ĥ|0̃〉〈0̃|0̃〉 ) = 0

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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Optimization of MCSCF Wave Functions
The energy

Non-Relativistic Hamiltonian (Second Quantization)

Ĥ = ĥ+ ĝ+hnuc =

∑pq hpqEpq +
1
2 ∑pqrs gpqrs(EpqErs−δqrEps)+hnuc

Contribution from one-electron operator

〈0| ĥ |0〉= ∑pq hpqDpq

Dpq = 〈0|Epq |0〉: The first order reduced density matrix.

Contribution from the two-electron operator

〈0| ĝ |0〉= ∑pqrs gpqrsPpqrs

Ppqrs =
1
2 〈0|EpqErs−δqrEps |0〉: second order density matrix

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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Optimization of MCSCF Wave Functions
The energy

Summary

Total MCSCF energy from sum over occupied orbitals

E =
〈
0̃
∣∣ Ĥ ∣∣0̃〉= ∑

pq
hpqDpq + ∑

pqrs
gpqrsPpqrs +hnuc.

Can be written as summations over active orbitals

E =
〈
0̃
∣∣ Ĥ ∣∣0̃〉= ∑

vw
FI

vwDvw + ∑
vwxy

gvwxyPvwxy +Ecore.

The molecular orbital coefficients appear in the hpq and gpqrs.

The CI coefficients appear in D and P.

Energy depends on MOs ϕ̃ and CI coefficients c

E = E{ϕ̃,c}
P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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Optimization of MCSCF Wave Functions
Unitary Transformation of MOs

Exponential parameterization

MOs are orthonormal and we wish to preserve this.

A unitary transformation of the orbitals ϕ̃ = ϕU, U†U= 1,
ensures orthonormality.

Any unitary matrix can be written in the form. U= expT
with T† =−T, (T is anti-hermitian).

Real MOs: orthogonal transformation and antisymmetric
matrix TT =−T.

Creation operators are transformed as â†
p̃ = exp(T̂)a+p exp(−T̂),

T̂ = ∑pq TpqEpq = ∑p>q Tpq(Epq−Eqp).

For CAS: only inactive → active and secondary, active→
secondary excitations are included (nonredundant excitations).

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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Optimization of MCSCF Wave Functions
Unitary Transformation of CI vector

An exponential ansatz for normalized expansions

The wave function is |0〉= ∑m |m〉Cm with ∑m |Cm|2 = 1.

The complementary space |K〉 is orthogonal to |0〉 : 〈0|K〉= 0.

Define Ŝ = ∑K 6=0 SK0(|K〉〈0|− |0〉〈K|).

SK0 are variational parameters and Ŝ
†
=−Ŝ.

unitary transformation of |0〉:
∣∣0̃〉= eŜ |0〉.∣∣0̃〉 remains normalized.

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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Optimization of MCSCF Wave Functions
The wave function ansatz and energy function

∣∣0̃〉= eT̂ eŜ |0〉

Comments

Transformation of both orbital and configuration space.

The operators T̂, Ŝ are antihermitian.

Wave function is normalized.

The parameters Tpq,p > q and SK0 can vary independently.

Other forms are normally used..

The energy function

E(T,S) =
〈
0̃
∣∣ Ĥ ∣∣0̃〉= 〈0|e−Ŝe−T̂ ĤeT̂ eŜ |0〉.

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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Optimization of MCSCF Wave Functions
The wave function ansatz and energy function

The energy function (from last slide)

E(T,S) =
〈
0̃
∣∣ Ĥ ∣∣0̃〉= 〈0|e−Ŝe−T̂ ĤeT̂ eŜ |0〉

The optimal energy

Vary T and S such that the energy becomes stationary.

∂E
∂Tpq

= 0
∂E

∂SK0
= 0

Nonlinear set of equations

Must be solved iteratively.

Large arsenal of methods from numerical analysis, including
1 The Newton-Raphson method.
2 Approximate /Quasi Newton methods.

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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Optimization of MCSCF Wave Functions
The Newton-Raphson Optimization Method

The Newton-Raphson method in general

We wish to find a stationary point of a function E(p), where p
is a set of parameters that can be freely varied.

Start with a guess, which for simplicity here we set to zero
p0 = 0.

Expand E through second order around this point

E(p)≈ E(2) = E(0)+∑
i

(
∂E
∂pi

)
0

pi +
1
2 ∑

ij
pi

(
∂ 2E

∂pi∂pj

)
0

pj

= E(0)+g†p+
1
2
p†Hp

g is the gradient vector and H is the Hessian matrix.
P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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Optimization of MCSCF Wave Functions
The Newton-Raphson Optimization Method

The Newton-Raphson method in general

An approximation to the stationary point is found by finding
the stationary point of E(2).
∂E(2)

∂pi
= 0→ g+Hp= 0 (p=−H−1g)

For this p, the new g and H are constructed,..

Continue untill convergence: |g| ≈ 0.

Comments

Approximating E with E(2)→ only valid for small p→
problems far from convergence.

Converges quadratically when p is small.

The linear equations must often be solved using iterative
methods.

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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Optimization of MCSCF Wave Functions
Taylor Expansion of the MCSCF Energy

The wave function and energy∣∣0̃〉= eT̂ eŜ |0〉

E =
〈
0̃
∣∣ Ĥ ∣∣0̃〉= 〈0|e−Ŝe−T̂ ĤeT̂ eŜ |0〉

The BCH expansion for operators

e−ÂB̂eÂ = B+[B̂, Â]+ 1
2 [B̂, Â], Â]]+ · · · .

Expand E through second order in T̂, Ŝ using the BCH expansion

E(2)(T,S) = 〈0| Ĥ |0〉+ 〈0| [Ĥ, T̂]+ [Ĥ, Ŝ] |0〉

+ 〈0| 1
2
[[Ĥ, T̂], T̂]+

1
2
[[Ĥ, Ŝ], Ŝ]+ [[Ĥ, T̂], Ŝ] |0〉

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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Optimization of MCSCF Wave Functions
Taylor Expansion of the MCSCF Energy

From last slide

E(2)(T,S) = 〈0| Ĥ |0〉+ 〈0| [Ĥ, T̂]+ [Ĥ, Ŝ] |0〉+ · · ·

The orbital gradient

T̂ = ∑p>q Tpq(Epq−Eqp) = ∑p>q Tpq.E−pq
∂E

∂Tpq
= go

pq = 〈0| [Ĥ,E−pq] |0〉

g0
pq vanishes trivially for e.g inactive-inactive excitations.

The Extended Brillouin Theorem for CASSCF wave functions

For the adjoint of a non-redundant rotations Eqp |0〉 = 0, so
go

pq = 〈0| [Ĥ,(Epq−Eqp)] |0〉= 2〈0| ĤEpq |0〉.
At convergence the matrix elements between the
wave-function and single excited states vanish.
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Optimization of MCSCF Wave Functions
The orbital gradient

Calculated using (yet) a Fock-matrix

go
pq = 2(Fpq−Fqp).

Most demanding part: active(v) → secondary(a).

Fva = ∑w FI
waDvw +∑wxy dvwxygawxy.

Sum is over active orbitals.

Requires integrals with 3 active indeces.

If integrals and density-matrices are known: scales as N4
actNsec.

No problem in constructing and storing.

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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Optimization of MCSCF Wave Functions
Taylor Expansion of the MCSCF Energy

From last slide

E(2)(T,S) = 〈0| Ĥ |0〉+ 〈0| [Ĥ, T̂]+ [Ĥ, Ŝ] |0〉+ ... · · ·

The CI gradient

Ŝ = ∑K 6=0 SK0(|K〉〈0|− |0〉〈K|), 〈K|0〉= 0.

∂E
∂SK0

= gc
K = 〈0|([Ĥ, |K〉〈0|− |0〉〈K|)] |0〉= 2〈K| Ĥ |0〉

|K〉 is orthogonal complement to |0〉 so:
gc = 0→ (1−|0〉〈0|)Ĥ |0〉= 0.

HC= EC.

The optimal CI-coefficients constitute a solution to the
standard CI eigenvalue problem.

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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Optimization of MCSCF Wave Functions
Taylor Expansion of the MCSCF Energy

From last slide

E(2)(T,S) = 〈0| Ĥ |0〉+ 〈0| [Ĥ, T̂]+ [Ĥ, Ŝ] |0〉+
〈0| 1

2 [[Ĥ, T̂], T̂]+ 1
2 [[Ĥ, Ŝ], Ŝ]+ [[Ĥ, T̂], Ŝ] |0〉

The Hessian: Partition into orbital (o) and CI (c) parts

H=

(
Hcc Hco

Hoc Hoo

)

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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Optimization of MCSCF Wave Functions
The Newton-Raphson Equations for MCSCF

Form(
Hcc Hco

Hoc Hoo

)(
S
T

)
=−

(
gc

go

)
Number of elements in H for medium scale calculation

Assume: 200 orbitals, 20 occupied orbitals, 106 SD’s.

Number of orbital rotations: 20×200 = 4000.

Hoo: 4000×4000 = 16×106 - not problematic.

Hoc: 4000×106 = 4×109 - may be stored.

Hcc: 106×106 =×1012 - difficult to store, (but is sparse).

Cannot be solved using standard methods like LU decomposition.

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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Optimization of MCSCF Wave Functions
Solving the Newton-Raphson Equations for MCSCF

Form(
Hcc Hco

Hoc Hoo

)(
S
T

)
=−

(
gc

go

)
.

To large to solve using standard decomposition methods.

Make approximations and/or use iterative methods

Iterative full second-order Set op a scheme to calculate Hessian
times vector directly.

Decouple CI and Orbital part Neglect orbital-configuration
coupling. Construct Hoo and solve configuration part
by standard CI.

Further approximations Approximate Hoo;done in the super-CI
approach.
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Optimization of MCSCF Wave Functions
Solving the Newton-Raphson Equations for MCSCF

Various codes

Virtually no package offers only a naive NR: can switch off
CI/orbital coupling, use damping techniques, etc.
Diagonalization of augmented Hessian (norm-extended
optimization).

Trust-region approaches that offer guaranteed convergence:

DALTON CASSCF/RASSCF (second-order) NEO/NR,
coupling.
MOLPRO general MCSCF (second-order+ in MOs), coupling.

Quasi-Newton approaches:

MOLCAS CASSCF/RASSCF (No coupling, first-order+ in
MOs).

Note: Number of iterations does not indicate complexity.
P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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Optimization of MCSCF Wave Functions
Excited states

DALTON: only separate calculation on each state.
Second-order procedure allows convergence to excited states.

MOLCAS: separate calculations, or averaging over states of
same spin and spatial symmetry.

MOLPRO: separate calculations, or averaging over any
mixture of states (spin, symmetry and charge can all be
different).

Averaging is often used to ensure nonabelian symmetry- (can
be done in a much simpler and more efficient manner).

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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Extensions of the CASSCF method

Optimization of CASSCF wave functions

The CASSI/RASSI method
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RASSI/CASSI: The RASSCF (CASSCF) State Interaction
Method

Matrix elements between different XASSCF(X=C,R) states

Assume we have obtained XASSCF wave function, |X〉 and
|Y〉, for two electronic states.

To determine transitions between the states, we must
calculate the the transition moment: 〈X| µ̂ |Y〉
µ̂ is for example the dipole operator: µ̂ = ∑pq~µpqEpq.

Transition matrix element is 〈X| µ̂ |Y〉= ∑
XY
pq DXY

pq~µpq.

DXY
pq = 〈X|Epq |Y〉 is a transition density matrix.

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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RASSI/CASSI: The RASSCF (CASSCF) State Interaction
Method

The Nonorthogonality Problem

The calculation of the transition density matrix is easy when
the two states are described in the same MO basis.

The same holds when the MOs are not the same but they are
biorthonormal:

〈
pX
∣∣qY
〉
= δpq

For CASSCF or RASSCF wave functions, the CI-coefficients
may be counter-rotated, so a wave functions may be
re-expressed in the biorthonormal basis.
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RASSI/CASSI: The RASSCF (CASSCF) State Interaction
Method
The CI-transformation technique of Prof. Malmqvist

The idea

A CI-vector is given for a given set of orbitals

The orbitals are now changed to a new basis

Change the CI-coefficients so the state with transformed
orbitals is identical to the original state

Complexity of the problem

For a pair of states, the operation count for the
transformation corresponds to CI with a one-electron operator

That is: Peanuts..

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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RASSI/CASSI: The RASSCF (CASSCF) State Interaction
Method

The algorithm allows

The computation of transition densities DXY and PXY .

Also: overlap integrals: 〈A|B〉 and Hamiltonian matrix
elements 〈X| Ĥ |Y〉.
Allows the solution of the XAS state interaction secular

problem

(
HXX−E1 HXY −ESXY

HYX−ESYX HYY −E1

)(
cX

cY

)
= 0

The resulting states are orthogonal, and non-interacting
through the Hamiltonian.

Hundreds of XASSCF states can be handled.
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Introduction to Dynamical correlation

And it is

The short-range correlation that arise as r12→ 0 - the Coulomb
cusp.

Characteristica

Wave function is non-differentiable when the coordinates of
two electrons are identical

At these points, the convergence of the wave function in an
orbital-based expansion is very slow.

Using optimized orbitals does not help for the last %

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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Introduction to Dynamical correlation

The Coulomb cusp for He

Left: One electron is fixed. The other electron moves in
two-dim-plane.

Right: One electron is fixed. The other electron moves in
circle with the same radius as fixed electron.

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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Introduction to Dynamical correlation

Methods to determine dynamic correlation

Single-reference(SR) Based on excitations out from a reference
state containing a single determinant/CSF

Multi-reference (MR) Based on excitations out from a reference
state containing a several determinant/CSF

Variational SRCI and MRCI

Perturbation Møller-Plesset and various Multireference schemes

Projection SR or MR Coupled cluster

Methods containing two-electron functions (F12,
geminals, ..) may be combined with the above

The challenge have been to develop methods that accurate include
both static and dynamic correlation

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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Introduction to Dynamical correlation
Wishing list for correlation methods

Size extensivity, definition

Consider two molecules A, B, infinite apart

Perform calculation with method X on the two molecules
separately → EA,EB

Perform also calculation with method X on supermolecule
containing both A,B → EAB

If EA +EB = EAB then method X is size-extensive

Size-extensive methods

RHF, UHF, FCI, CC, Perturbation theory (not CASPT2..)

Active spaces may be choosen, so CAS is size-extensive

CI, Including MRCI, is not size-extensive
P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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Introduction to Dynamical correlation
Combined with static correlation

We want a method to treat dynamical correlation built on top
of MCSCF methods.

(Or use UHF-based methods and hope. . . )

Need “multireference” methods for CC, CI, PT.

Should preferable be both size-extensive and size-consistent

Or perhaps some sort of DFT on top of MCSCF (not
discussed here).

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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The Multireference CI Method
Introduction

The wave function space

Select a number of reference configurations Φ(I) based on an
MCSCF calculation.

Generate all singly, Φ(I)x
i and doubly, Φ(I)xy

ij excited
configuration state functions (CSFs). i, j are occupied orbitals
and x,y occupied or external orbitals.

Obtained from operators Êxi, ÊxiÊyj operating on each Φ(I).

The above set of CSFs is redundant - same CSFs obtained
several times.

E.g., H2 two-reference, ÊxσgÊyσg and ÊxσuÊyσu give the same
doubly-excited configuration.

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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The Multireference CI Method
Introduction

The wave function

A linear combination of the configurations

ΨMRCI = ∑
I

[
C(I)Φ(I)+∑

ix
Cx

i (I)Φ(I)x
i +∑

ijxy
Cxy

ij (I)Φ(I)xy
ij

]

Includes both dynamic and static correlation energy

Linear expansion → problems with size-extensivity

The parameters C
Are determined using the variational principle

Leads to the eigenvalue problem (H−E1)C= 0

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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The Multireference CI Method
The Direct CI Method

Idea

It is not possible to store the Hamiltonian matrix H

Obtain instead selected roots using iterative methods

Efficient direct CI methods require

Efficient numerical algorithms to obtain the lowest eigenvalues

Efficient routines for the calculation of HC from integrals

σ =HC

Ĥ = ∑pq hpqÊpq +
1
2 ∑pqrs(pq|rs)(ÊpqÊrs−δqrÊps)

σµ = ∑ν

[
∑pq hpqAµν

pq + 1
2 ∑pqrs(pq|rs)Aµν

pqrs
]

Cν

Aµν
pq and Aµν

pqrs are the direct CI coupling coefficients.
P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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The Multireference CI Method
Internal contraction

Problem with MRCI

Number of configurations runs easily into millions and billions

Internal contraction

Apply excitation operators to the MCSCF wave function Ψ0,
instead of to the configurations in the reference space

The ’configurations’ obtained in this way are much more
complicated objects.

There are much fewer coefficients to optimize: Cxy
ij (I)→ Cxy

ij ,
more-or-less independent of the number of CSFs in Ψ0.

This approach is termed internally contracted MRCI.

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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The Multireference CI Method
Internal contraction

The pro and cons

Internal contraction reduces variational freedom and will raise
the energy.

This is rarely an issue, especially in implementations that
“relax” the coefficients in Ψ0 during the iterations.

Occasional problems, particularly with singles coefficients and
these are sometimes then uncontracted.

MOLPRO: internally contracted MRCI
MOLCAS: no contraction in MRCI
A number of new programs coming (BAGEL)

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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The Multireference CI method

Advantages

Probably the most accurate method available for small
molecules.

Balanced calculations for several electronic states.

Disadvantages

MRCI is not size-extensive.

The size of the uncontracted CI expansion grows quickly with
the number of reference configurations.

Even with internal contraction large multiconfiguration
reference functions become intractable.

Becomes less and less practical for large molecules.

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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Nearly size-extensivene multireference methods
Multireference ACPF and relatives

Idea

Use MRCI form of wave function: Ψ = Ψ0 +Ψa +Ψe

Ψa is in reference space, Ψe contain the external excitations

Modify energy-expression

The energy expression

E = 〈Ψ0+Ψa+Ψe|H−E0|Ψ0+Ψa+Ψe〉
1+ga〈Ψa|Ψa〉+ge〈Ψe|Ψe〉 (Numerator is size-extensive)

g→ methods (N is number of electrons)

MRCI: ga = 1, ge = 1.

MRACPF: ga = 1, ge = 2/N.

MRCEPA(0): ga = 0, ge = 0.

MRLCCM: no Ψa, ge = 0.

QDVPT: ga = 1, ge = 0.

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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Other (nearly) size-extensive multireference methods
Multireference Davidson corrections

Idea

Perform a MRCI calculation as usual

Add a correction to the obtained correlation energy to obtain
a better (lower) energy

Two forms

Two forms of corrections:
∆Ecorr = (EMRCI−EREF){1−∑R(cMRCI

R )2}
∆Ecorr = (EMRCI−EREF){1−∑R(cMRCI

R cREF
R )}

Both trivial to compute.

Problems

Weak theoretical foundation- but works often anyhow!!

Same problems as single-reference correction

Does not work when say 50-100 electrons are correlated

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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Multi-reference perturbation theory
Rayleigh-Schrödinger Perturbation Theory

Split Hamiltonian

Ĥ = Ĥ0 +λ V̂.

Ĥ0 |00〉 = E0 |00〉

First-order correction to wave function and second-order correction
to energy

|01〉= ∑µ C1
µ |µ〉, 〈µ|00〉= 0

C1
µ =−∑ν(H0−E0S)

−1
µν 〈ν | V̂ |00〉

(H0)µν = 〈µ| Ĥ0 |ν〉 ,Sµν = 〈µ|ν〉
E2 = 〈01| V̂ |00〉
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Multi-reference perturbation theory
Various forms

Many forms, differs by choices of

1 Reference state

2 Form of Ĥ0

3 Form of wave function corrections

4 (Use of intermediate Hamiltonian, buffer states ...)

Reference state

CASSCF/RASSCF/GASSCF...

Incomplete spaces

Is usually not convergent, but low-order corrections (2+3) are
useful

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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Multi-reference perturbation theory
Various forms

Form of Ĥ0

Fock-type one-electron operator in all orbital spaces(CASPT)

Fock-type one-electron operator in inactive and secondary
spaces, full two-electron Hamilton operator in active space
(NEVPT)

Form of wave function corrections

Complete internal contraction - MOLCAS-CASPT, NEVPT

Complete internal contraction - MOLPRO-CASPT, NEVPT

No internal contraction: many approaches

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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CASPT2
Form of reference state, correction, and Ĥ0

Reference state, |00〉
CAS state - with or without optimized orbitals

Form of first-order correction

|01〉= ∑µ C1
µOµ |00〉

Oµ contains the single and double excitations from |00〉
Only SD space in first-order correction: interacts with |00〉

The zero-order Hamiltonian

Ĥ0 = P̂0F̂P̂0 + P̂KF̂P̂K + P̂SDF̂P̂SD + P̂XF̂P̂X

F̂ is a Fock-type one-electron operator, several choices
Projections are needed for a zero-order eigenvalue equation
P̂0 projects on |00〉, P̂K projects on other states in the
CASpace, P̂SD projects on single and doubles, P̂X on the rest.
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CASPT2
The Fock Operator, simplest choice

Defined as

f̂ = ∑pq fpqEpq

fpq = ∑σ 〈00| [apσ , [H,a†
qσ ]+] |00〉=

hpq +∑rs Drs
[
(pq|rs)− 1

2(pr|qs)
]
.

Becomes standard MP Ĥ0 if |00〉 is HF wave function

Properties of f

Inactive orbitals fpp =−IPp

External orbitals fpp = EAp

nocc
p = 1: fpp =

1
2(−IPp +EAp)

Unpaired electrons are favoured, so binding energies are too
low.
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CASPT2
Fock matrix Elements and the First-Order Equation

The first-order equation

(H0−E0S)C
1 =−V

Eight types of double excitations

Equations may be split into 8 blocks, one for each of 8
excitation types

The coupling of the blocks is introduced in a second iterative
step.

Fock matrix Elements,H0

Contain up to fourth-order density matrices:
〈pqrs| F̂ |p′q′r′s′〉= ∑mn fmn 〈00| ÊsrÊqpÊmnÊp′q′Êr′s′ |00〉
May be rearranged to require three-body density

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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CASPT2
Computational steps in a CASPT2 calculation

1 Perform a CASSCF calculation, single-state or state-average.

2 Determine orbitals that block-diagonalizes the Fock matrix.

3 Transform integrals to obtain two-electron integrals with at
least two indeces corresponding to occupied orbitals (second
order transformation).

4 Compute S and some additional matrices and diagonalize
them.

5 Compute the second-order energy in the ”diagonal”
approximation.

6 Solve the large system of linear equations introducing the
coupling arising from the non-diagonal blocks of H0.

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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CASPT2

Intruder states in CASPT2

CASPT2 will only be an adequate method when the
perturbation is small.

All large CI coefficients should thus be included in the CAS
space.

When large coefficients appear in the first-order wave function
(weight of the reference function is small), the active space
should in general be increased.

A large coefficient may arise from artifacts of Ĥ0

This is the intruder state problem in CASPT2.

May be removed using level-shifting and/or other choices of F̂

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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CASPT2
Multi-State (MS) CASPT2

Idea

Diagonalize approx. Hamiltonian in space of CASPT2 states

First perturb, then diagonalize scheme

Natural extension of XASSI (X=C,R)

The method

Assume a number of CASSCF states, Ei,Ψi, i = 1,N,

The CASPT first-order wave functions are denoted χi, i = 1,N.

Use Ψi +χi as basis functions in a approx. var. calc.

Effective Hamiltonians: (Heff )ij = δijEi + 〈Ψi| Ĥ |χj〉
Recommended for treating several states of one symmetry.

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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CASPT2

Advantages of CASPT2

A CAS wave function is the reference so static correlation may
be included.

The size of the contracted SD space is never large and is
independent of the CAS CI space.

The formalism is nearly size-extensive. Therefore a large
number of electrons may be correlated (more than 100 in
practical applications).

The method has the same orbital invariance as the CASSCF
method.

May be extended to RAS and GAS wave functions.

Requires often tuning of the level-shift parameter.

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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CASPT2

Applications of CASPT2

Energy surfaces for ground and excited states.

Electronic spectroscopy, including all types of excited states
(singly, doubly, etc. excited, valence and Rydberg states,
charge transfer, etc.).

The whole periodic system from H to Pu (scalar relativity in
CASSCF, spin-orbit with RASSI).

Radicals and biradicals, positive and negative ions.

Large molecules where MRCI is not applicable (calculations on
systems with up to 50 atoms have been performed).

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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CASPT2

Problems with CASPT2

The active space may become prohibitively large (today’s limit
14-16 active orbitals).

The intruder state problem.

The zeroth-order Hamiltonian has a (small) systematic error
(has recently been fixed with a shifted Hamiltonian, the IPEA
shift).

Transition properties are obtained at the CASSCF level, not
CASPT2.

It is not a “black box” method. (But is this really a
problem/disadvantage. . . ?)

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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CASPT2
Applications

N2 ground-state spectroscopic constants

re ωe De

(Å) (cm−1) (eV)

CASSCF 1.102 2329 8.91
CASPT2 1.100 2312 9.43
ACPF 1.099 2330 9.79
CCSD(T) 1.099 2332 9.82

Expt 1.098 2359 9.90

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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NEVPT2

Use Dyall’s zero-order operator

Ĥ0 = ∑ij fijEij +∑ab fabEab +∑vw hvwEvw +
1
2 ∑vwxy gvwxy(EvwExy−δwxEvy)

Fock-operator in inactive (indices ij) and secondary orbitals
(indices ab)

Full Hamiltonian in active orbitals (indices vwxy)

Requires five-body terms over active orbitals.

Expansion of first-order wave-function

Advantageous to use internal contraction

Due to the accurate treatment of interactions between active
orbitals, the CAS CI coefficients may be re-optimized

Overall formalism very similar to the CASPT formalism.
P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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NEVPT2

Pro and cons compared to CASPT-theoretical aspects

More complicated and involved computations due to the
2-electron term over active orbitals - Not decisive these days.

Treats the orbitals given rise to static correlation accurately.

But treats the different types of orbitals differently.

Allows relaxation of the CAS-coefficients

Less developed codes (no multistate version?, No RAS/GAS
extensions).

zero-order eigenvalue equation automatically fulfilled.

Rigourously size-extensive.

No (very few) intruder states.

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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NEVPT2

Cr2 potential curve using CASPT2 and NEVPT2

comparing RASPT2(12,22) to DMRG-CASPT2(12,28), the
difference can be situated in the extra orbitals included in the
active space or the restrictions to the excitation level that are
applied in the RAS reference compared to the DMRG reference
wave function. Unfortunately, there is no DMRG-CASPT2-
(12,22) data available, which could give more insight into the
origin of the discrepancy and rule out an effect of the extra 6
active orbitals. Although DMRG-NEVPT2(12,22) uses the
same active space as RASPT2(12,22), the difference is again
not only limited to the RAS restrictions but also the type of
zeroth-order Hamiltonian. This means that with the current
data, we cannot pinpoint the origin of the much larger
dissociation energy obtained with RASPT2 compared to either
DMRG-CASPT2 or DMRG-NEVPT2.
Compared to experiment, both DMRG-based methods give

the best agreement, within 0.13 eV of the experimental value
from Simard et al.1 RASPT2(12,22) on the other hand
overestimates the stability of the chromium−chromium bond
compared to experiment by 0.33 eV. We should note at this
point that the experimental value of 1.56 eV we chose for

comparison is the most recently obtained, and other values for
the dissociation energy are available as well. For example, when
taking 1.47 eV instead as the experimental reference, it is
DMRG-NEVPT2(12,22) and MR-AQCC that have the best
agreement, both within 0.12 eV from the experimental De. Guo
et al.18 also investigated the effect of including semicore
correlation already in the reference wave function by
performing a set of DMRG-NEVPT2(28,20) calculations by
adding to the original (12,12) active space the 3s and 3p
orbitals of each chromium atom. Curiously, even though a large
upward shift of the PES by almost 0.6 eV compared to DMRG-
NEVPT2(12,12) is observed, the authors conclude that the
effect is not as important as the double shell effect. We tried to
reproduce this by performing a RASPT2(28,20) where the 3s
and 3p orbitals were added to RAS1, allowing up to double
excitations into the (12,12) RAS2 space. However, we instead
found that the effect was negligible. We should note at this
point that the SC-NEVPT2 method, used for the DMRG-
NEVPT2 calculations, is the so-called “strongly contracted”
variant, where the first-order wave function is expanded in a

Figure 8. Potential energy curve of the chromium dimer computed with different methods and experiment. All results were obtained by
extrapolation to the complete basis set limit.

Table 2. Equilibrium Distance (re), Dissociation Energy (De), and Harmonic Vibration Wavenumber (ωe) for the Ground State
of Cr2 Using Different Methodsa

method basis set re (Å) De (eV) ωe (cm
−1)

DMRG-CASPT2(12,28)17 CBS(QZP/5ZP) 1.658 1.69 565
DMRG-NEVPT2(12,22)18 CBS(QZP/5ZP) 1.651 1.45 423
RASPT2(12,22) CBS(QZP/5ZP) 1.666 1.89 489
CASPT2(12,12) CBS(QZP/5ZP) 1.681 1.85 770
MR-AQCC16 CBS(TZP/QZP) 1.685 1.35 453
experiment 1.67882 1.56 ± 0.061 480.63

are and De were obtained from fitting second-order interpolating splines through the single-energy data points. ωe was obtained using the VIBROT
program,31 using 10 vibrational levels, providing the spline functions as PES. Details of the analysis can be found in the Supporting Information.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00034
J. Chem. Theory Comput. 2016, 12, 1647−1655
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P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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NEVPT2

Pro and cons compared to CASPT-accuracy

The theoretical advances of the NEVPT formalism does not in
general lead to improved accuracy.

CASPT has a tendency to overshoot correlation effects, which
often leads to very good results in smaller basis sets.

For complicated transition metal systems, the current advice
is to stick to the CASPT method.

I am not sure that the final verdict on the relative merits has
been made.

P.R. Taylor and J. Olsen, Multiconfigurational Methods ESQC-19
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