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Purpose of response theory

Twofold
1 Provide method for calculation the response of a molecule to a

time-dependent external field(time-dependent perturbation), typically
electromagnetic field.

Weak external field → linear response.
Strong external field → nonlinear response.

2 Properties of excited states.

Excitation energy from groundstate.
Transition moments, dipole moments, etc.

Motivation
1 Nonlinear response properties are of huge technological importance in

electronics, photonics, ...

2 Information about excited states is impossible or difficult to obtain
with standard quantum-chemical methods.
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Types of response to external fields

Transition occurs: Photon absorbtion

One-photon transition (linear
response)

|i〉
ω

|f 〉

ω = Ef − Ei .

Two-photon transition
(nonlinear response)

|i〉
ω

ω′

|f 〉

ω + ω′ = Ef − Ei

No transition occurs: Photon emission

Scattering (linear response)

|i〉
ω

|i〉
ω

Frequency doubling
(nonlinear response)

|i〉
ω

ω′

|i〉
ω + ω′
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Emission of photons from molecules in external field

Classically, a dipole oscillating with frequency ω emits light with
frequency ω → examine how dipole of a molecule oscillates.

Molecule with electromagnetic field

Ĥ0 → Ĥ0 + V̂ t , V̂ t = µ cosωt, µ = r.

Time-dependent, ω is frequency.

|0〉 → |0̃(t)〉 = eiF (t)
(
|0(0)〉+ |0(1)〉 cosωt + |0(2)〉 cos 2ωt + . . .

)
.

〈0̃(t)|µ|0̃(t)〉 = 〈0|µ|0〉+
[
〈0̃|µ|0̃〉

](ω)
cosωt︸ ︷︷ ︸

→photons,ω

+
[
〈0̃|µ|0̃〉

](2ω)
cos 2ωt︸ ︷︷ ︸

→photons,2ω

+ . . .

To predict emission of photons, expectation values and their
time-development are important
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Time-dependence of expectation values
Introduction to the mathematical treatment for exact states

General TD perturbation

Ĥ0 → Ĥ0 + V̂ t , V̂ t =
∫∞
−∞ dωV̂ ωe(iω+ǫ)t .

ǫ: a small positive number (→ 0+), perturbation → 0 for t → −∞.

Time-development of |0̃(t)〉
Solve the time-dependent Schrödinger equation (TDSE)
Ĥ|0̃(t)〉 = i

∂
∂t
|0̃(t)〉 in orders of the perturbation.

|0̃(t)〉 = |0〉+
∫ ∞

−∞
dωe(−iω+ǫ)t

linear in V︷ ︸︸ ︷
|0(ω)1 〉

+

∫ ∞

−∞

∫ ∞

−∞
dω1dω2e

(−i(ω1+ω2)+2ǫ)t

Quadratic in V︷ ︸︸ ︷
|0(ω1,ω2)

1 〉
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Time-dependence of expectation values
Introduction to the mathematical treatment for exact states, cont’d

Insert expansion of |0̃(t)〉 in 〈0̃(t)|Â|0̃(t)〉 for operator Â

〈0̃(t)|Â|0̃(t)〉 = 〈0|Â|0〉+
∫ ∞

−∞
dω1e

(−iω+ǫ)t

linear in V︷ ︸︸ ︷
〈〈A;V ω1〉〉ω1

+
1

2

∫ ∞

−∞

∫ ∞

−∞
dω1dω2e

(−i(ω1+ω2)+2ǫ)t

Quadratic in V︷ ︸︸ ︷
〈〈A;V ω1 ,V ω2〉〉ω1ω2 + . . .

The response functions

〈〈A;V ω1〉〉ω = 〈0(−ω)
1 |Â|0〉+ 〈0|Â|0(ω)1 〉 is the linear response function.

〈〈A;V ω1,V ω2〉〉ω1ω2 is the quadratic response function.

Describes how expectation values changes as perturbation is added.

Essential in the following!
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Example of response functions
Time-dependent dipole-perturbation

The perturbation

Â = X , V̂ t = Z (eiωt + e−iωt).

Electromagnetic field with frequency ω.

Expectation value

〈0̃(t)|X |0̃(t)〉 = 〈0|X |0〉 + 〈〈X ;Z 〉〉ωe−iωt + 〈〈X ;Z 〉〉−ωe
iωt

+
1

2
〈〈X ;Z ,Z 〉〉ωωe−2iωt +

1

2
〈〈X ;Z ,Z 〉〉−ω−ωe

2iωt + 〈〈X ;Z ,Z 〉〉ω−ω .

The response functions

〈〈X ;Z 〉〉: Dynamic polarizability(× -1) → scattering.

〈〈X ;Z ,Z 〉〉: Dynamic first hyperpolarizability (× -1)→ frequency
doubling.
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Excited states and response functions

Form of the linear response function

〈〈A;V ω〉〉ω =
∑

n 6=0

〈0|A|n〉〈n|V ω|0〉
ω − (En − E0)

−
∑

n 6=0

〈0|V ω|n〉〈n|A|0〉
ω + (En − E0)

|n〉: eigenstate of Ĥ0: Ĥ0|n〉 = En|n〉.

Singularities (poles)

Identifies excitations energies ωf = Ef − E0.

Residues

lim
ω→ωf

(ω − ωf )〈〈A;V ω〉〉ω = 〈0|A|f 〉〈f |V ω|0〉

Gives information about transition moment between ground and
excited state, e.g. 〈0|X |f 〉 (one-photon transition moments).
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Two-photon transition moments from 〈〈A;B ,C 〉〉

The two-photon transition moment (a,b are directions, say x,y)

|0〉
ω1

ωi − ω1

|i〉
Γba(ω1) =

∑

n

〈0|µa|n〉〈n| (µb − 〈0|µb |0〉) |i〉
ωn − ω1

+
∑

n

〈0|µb |n〉〈n| (µa − 〈0|µa|0〉) |i〉
ωn − (ωi − ω1)

A residue of the quadratic response function

lim
(ω2→ωi )

(ω2 − ωi )〈〈µb;µa, µc〉〉−ωi ω2 =

−
[
∑

n

(
〈0|µa|n〉〈n| (µb − 〈0|µb|0〉) |i〉

ωn − ω1
+
〈0|µb |n〉〈n| (µa − 〈0|µa|0〉) |i〉

ωn − (ωi − ω1)

]

〈i |µc |0〉 = −Γba(ω1)〈i |µc |0〉
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Transition moments between excited states from the

quadratic response function

Second order residue

lim
ωB→ωf

(ωB − ωf ) lim
ωC→−ωi

(ωC + ωi)〈〈A;B ,C 〉〉ωB ωC

= −〈0(0)|C |i〉〈i |(A − 〈0(0)|A|0(0)〉)|f 〉〈f |B |0(0)〉

Allows identification of matrix element between two excited states.
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Response functions will do it all !

Transitions/No transitions.

One-photon/Multi-photon transitions.

polarizabilities and hyperpolarizabilities.

Excitations energies and other properties of excited states.

Roy Orbison:

Everything you need, I got it..
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Equations for the time-development of a state
Introduction

The time-dependent Schrödinger equation(TDSE)

Ĥ|0̄(t)〉 = i
∂
∂t
|0̄(t)〉.

General normalized wavefunction

|0̄〉 = eiF |0̃〉.
F is a phase-factor: real, depends on time but not on space.

|0̃〉 is the regular wave function - eliminates annoying phase-factor.

Fulfills a modified TDSE: (Ĥ + Ḟ )|0̃(t)〉 = i
∂
∂t
|0̃(t)〉.

Eliminate phase-factor: P̂0̃(Ĥ − i
∂
∂t
|0̃(t)〉 = 0, P̂0̃ = |0̃〉〈0̃|.

Form of the regular wave function

Introduce a orthonormal basis {|R〉, |I 〉}.
|0̃〉 = |R〉+

∑
I ci |I 〉√

1+
∑

I |cI |
2
.

|R〉 is the reference state, typical solution to the TISE.

The coefficients c are now the time-dependent parameters.
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Equations for the time-development of a state
Periodic perturbations

Assume a periodic Hamiltonian

Ĥ(t) = Ĥ(t + T ).

The regular wave function is then also periodic: |0̃(t)〉 = |0̃(t + T )〉.
Period T → frequency ω = n2π/T , n = 1, 2, ...

Periodic Hamiltonian

Includes obviously a single harmonic perturbation Ve iωt + V †e−iωt .

For a given finite set of frequencies, ω1, ω2, ..., a T can always found
so ωi = ni2π/T to arbitrary precision.

Describes thus also multicolor perturbations( several frequencies).

Periodic Hamiltonians are assumed from now on
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Equations for the time-development of a state

Introduce time-average of an expectationvalue

{Ô}T = 1
T

∫ T

0 dt 〈0̃(t)|Ô|0̃(t)〉.
Integration both over space and time.

Wave function in action is the regular wave function.

The time-averaged quasi-energy E
E = {Ĥ − i

d

dt
}T = 1

T

∫ T

0 dt 〈0̃|(Ĥ − i
d

dt
)|0̃〉.

The variational principle for the exact time-averaged quasi-energy

It may (easily) be shown that the TDSE is equivalent to

δE = δ

(
1

T

∫ T

0
dt 〈0̃|(Ĥ − i

d

dt
)|0̃〉
)

= 0

Is not a minimization- not even for the ground state.
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Equations for the time-development of a state
The time-dependent Hellmann-Feynman theorem

(δE = δ{〈0̃|H − i
∂
∂t
|0̃〉}T = 0)

Consider dependence of quasi-energy of a perturbation

H = H(ǫ), ǫ may for example be the strength of an added electric
field.

The quasi-energy E as a function of ǫ.

dE
dǫ

= {〈0̃|∂H
∂ǫ
|0̃〉}T + {〈∂0̃

∂ǫ
|H − i

∂

∂t
|0̃〉}T + {〈0̃|H − i

∂

∂t
|∂0̃
∂ǫ
〉}T

= {〈0̃|∂H
∂ǫ
|0̃〉}T + δE

|δ0̃= ∂0̃
∂ǫ

= {〈0̃|∂H
∂ǫ
|0̃〉}T

Comments

Is the time-dependent Hellmann-Feynman theorem.

The derivative of the quasi-energy equals the expectation value of the
derivative of the Hamiltionian.
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Equations for the time-development of a state
Comparison of time-dependent and time-independent theory

Time-dependent Time-independent

Schrödinger equation P0̃

(
H − i

∂
∂t

)
|0̃〉 = 0 P0̃H|0̃〉 = 0

Variational principle δ{〈0̃|H − i
∂
∂t
|0̃〉}T = 0 δ〈0̃|H|0̃〉 = 0

Hellmann-Feynman theorem dE
dǫ

= {〈0̃|∂H
∂ǫ
|0̃〉}T dE

dǫ
= 〈0̃|∂H

∂ǫ
|0̃〉

(P̂0̃ = |0̃〉〈0̃|)
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The quasi-energy E and response functions

Perturbation expansions

The time-dependent state is expanded in orders of the perturbation.

The equations for time-development may then be obtained from the
various orders of the time-averaged quasi-energy.

Well, it has the response functions we were after..

From the perturbation expansion, we obtain the quasi-energy in
orders of the perturbation.

The response functions are the perturbation expansion of a
expectation value of an operator A.

It may be shown that these are related as

1 〈〈A;B〉〉 = 2 d
2
E

dǫAdǫB
.

2 〈〈A;B,C 〉〉 = 6 d
3
E

dǫAdǫBdǫC
.

- Just as the static polarizability is the second derivative of the
normal energy.
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Response Theory for SCF wave functions
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The time-dependent SCF wave-function

Parameterization of the regular SCF wave function

|H̃F〉 = eiκ̂(t)|HF〉.

The orbital rotation operator e iκ̂(t)

κ̂ =
∑

µ(κµq
†
µ + κ∗µqµ).

q
†
µ is spin-orbital excitation a

†
PaQ .

κ̂ is hermitian → iκ̂ is anti-hermitian → conservation of
orthonormality of orbitals.

Sum over µ is over non-redundant excitation operators.

The time-averaged quasi-energy

E = {〈H̃F|(H − i
∂
∂t
)|H̃F〉}T .

δE = 0 defines time-development of orbitals.
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The (time-averaged) SCF quasi-energy

Arguments for variational approach

This approach leads to a formalism where a number of important
relations are fulfilled, also for approximate theory (example:
equivalence between different forms of the oscillator strengths).

However, no quasi-energy is systematically lowered when the
variational space is enlarged.

Becomes standard HF theory when the perturbation becomes
time-independent.

Time-dependence from variational calculations on E
Exact: Find the time-dependent operators parameters κ̂µ(t) that

optimizes the quasi-energy.

Perturbative: Find the operators frequency-dependent parameters κ̂µ(ω)
that optimizes the quasi-energy through given order - used
here.
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Determination of the linear SCF response function
General considerations

Obtained from the quasi-energy

The linear response function is equal (within a factor of two) to the
second-order quasi-energy.

The quasi-energy is variational → the first-order correction to the
wave function is sufficient.

Expansion of perturbation and first-order wave function correction

V =
∑

B ǫBVBe
−iωB t .

κ̂(t) = κ̂(1)(t) + κ̂(2)(t) + · · · .
κ̂(1) =

∑
B ǫB κ̂

Be−iωB t .

κ̂B =
∑

µ(κ
B
µ q

†
µ + κB∗

µ qµ)

V is Hermitian → operators comes in pairs with indices B ,−B .

Unperturbed wave-function is assumed optimized

〈HF|[q†µ,H0]|HF〉 = 0.
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Determination of the linear SCF response function
The second-order time-dependent quasi-energy, E (2)(t)

The equations

|H̃F〉 = eiκ̂(t)|HF〉,E (t) = 〈HF|e−iκ̂(t)(H − i
∂
∂t
)eiκ̂(t)|HF〉.

Insert expansion of κ̂, use the BCH expansion and HF conditions

E (2)(t) = −i〈HF|[κ̂(1),V (t)]|HF〉 − 1
2〈HF|[κ̂(1), [κ̂(1),H0 − i ∂

∂t
]]|HF〉.

Introduce

T̂ = {q†,q},KB = {κ̂B , κ̂B⋆}T , κ̂B = T̂KB = KB † T̂†

E[2] = 〈HF|[T†, [H0,T]]|HF〉 ← 〈HF|[κ̂(1), [κ̂(1),H0]]|HF〉.
S[2] = 〈HF|[T†,T]|HF〉 ← 〈HF|[κ̂(1), [κ̂(1),−i ∂

∂t
]]|HF〉.

V[1]
B = 〈HF|[T†,VB ]|HF〉 ← 〈HF|[κ̂(1),V (t)]|HF〉.

Insert, time-average, minimize...→ the SCF linear response function

〈〈A;B〉〉ωB
= 2E(2)A,B = V

[1]†
−A (E

[2] − ωBS
[2])−1V

[1]
B
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The linear SCF response function
〈〈A;B〉〉ωB

= V
[1]†
−A(E

[2] − ωBS
[2])−1V

[1]
B , the structure and form of E[2] and S[2]

Our definition

E[2] = 〈HF|[T†, [H0,T]]|HF〉, S[2] = 〈HF|[T†,T]]|HF〉.
T = {q†,q}, Dimension = N(Occ.)xN(Virt.).

The two forms of T-operators defines blocks of E[2] and S[2]

E[2] =

(
〈HF|[q, [H0,q

†]]|HF〉 〈HF|[q, [H0,q]]|HF〉
〈HF|[q†, [H0,q

†]]|HF〉 〈HF|[q†, [H0,q]]|HF〉

)
=

(
A B

B A

)

A is the matrix of single excitations.

B is small and couples excitations and de-excitations.

Neglecting B gives single-excited CI (Tamm-Dancoff).

S[2] =

(
1 0

0 −1

)

The structure of E[2] and S[2] will give structures in eigenvalues.
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Diagonal form of the linear response function
For analysis

Simultaneous diagonalization of E[2],S[2]

Consider the generalized eigenvalue problem E[2]Xi = ωiS
[2]Xi .

Xi =

(
Zi

Yi

)
.

Two types of eigenvectors: X†
i S

[2]Xi = 1 ,X†
i S

[2]Xi = −1.
For eigenvectors with X

†
i S

[2]Xi = 1. define

Ô
†
i =

∑
k Zµiq

†
µ +

∑
µYµiqµ (Excitation operator).

Allows rewrite of the linear response function

〈〈A;B〉〉ω =
∑

n

〈0|[Â, Ô†
n]|0〉〈0|[Ôn ,B ]|0〉
(ω − ωn)

−
∑

n

〈0|[B̂ , Ô†
n]|0〉〈0|[Ôn ,A]|0〉
(ω + ωn)
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Identification of excitation energies and transition moments

The SCF linear response function

〈〈A;B〉〉ω =
∑

n

〈0|[Â, Ô†
n]|0〉〈0|[Ôn ,B ]|0〉
(ω − ωn)

−
∑

n

〈0|[B̂ , Ô†
n]|0〉〈0|[Ôn ,A]|0〉
(ω + ωn)

The exact linear response function

〈〈A;B〉〉ω =
∑

n

〈0|Â|n〉〈n|B̂|0〉
(ω − ωn)

−
∑

n

〈0|B̂ |n〉〈n|Â|0〉
(ω + ωn)

Suggests the identifications

The excitation energies are ωk obtained as E[2]Xi = ωiS
[2]Xi .

The transition moments are 〈0|Â|k〉 = 〈0|[Â, Ô†
k ]|0〉.
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A bit more on the excitation operators

Z,Y

Ô
†
k =

excitation︷ ︸︸ ︷∑

µ

Zµkq
†
µ+

deexcitation︷ ︸︸ ︷∑

µ

Yµkqµ

Z(order 0) > Y((order 1)

Occ

Virt
q† q

The transition moment

〈0|Â|k〉 = 〈0|[Â, Ô†
k ]|0〉 =

from Z︷ ︸︸ ︷
〈0|ÂÔ†

k |0〉 −
from Y︷ ︸︸ ︷
〈0|Ô†

k Âk |0〉
Not of the form 〈0|Â|k〉 →, no wave function for excited state.

Instead: Recipe for construction transition moment.
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Linear response HF/DFT calculations

Optimize reference state

Standard HF/DFT optimization.

Excitation energies

Solve generalized eigenvalue problem E[2]Xi = ωiS
[2]Xi .

One excitation state = one eigenvector.

Done iteratively, E[2] is not constructed (Direct calculation of E[2]V).

May be performed in the AO basis → large molecules (≈ 100 atoms).

Linear scaling programs in development → even larger molecules (≈
1000-? atoms).

Transition moments

From the excitation vector Xn =
(
Zn Yn

)
calculate transition

moment as 〈0|Â|n〉 = 〈0|[Â, Ô†
n]|0〉.
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Calculation of linear response function per se

〈〈A;B〉〉ω = −A[1]T (E[2] − ωS[2])−1B[1]

Solve one sets of linear equations

Nb(ω) = (E[2] − ωS[2])−1B[1]

Done by iterative techniques (Preconditioned Conjugate Gradient).

Direct calculations of E[2]V,S[2]V.

May also be done in the AO basis → large molecules (≈ 100 atoms).

May also be done in the AO basis using linear scaling. → even larger
molecules (≈ 1000 - ? atoms).
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Density Functional Response Theory (TDDFT)
Formal aspects

The Runge-Gross theorem

An extension of the standard Hohenberg-Kohn theorems to
time-dependent theory.

Says that the time-dependent density ρ(r, t) determines the
time-dependent potential for a system evolving from a fixed initial
state.

Fixed point theorem

Ruggenthaler and Van Leeuwen has recently devised a proof of the
existence and uniqueness of the time-dependent XC-functional,
(Europhysics Letters 95, 13001 (2011)).
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Density Functional Response Theory
Kohn-Sham formulation

Kohn-Sham formalism

The time-dependent DFT calculations are typically done in the
Kohn-Sham formulation.

The kinetic energy is evaluated as the kinetic energy of an
Slater-determinant plus a correction.

Very similar to Hartree-Fock Theory

Same form of time-dependent equations.

Linear response functions are very similar in HF and DFT.

Only difference comes the use of exchange-correlation potential in
DFT.

The size of molecules that can be treated are thus similar in TDHF
and TDDFT.
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Density Functional Response Theory
Exchange-correlation potentials

The adiabatic approximation

Time-dependent density → time-dependent exchange-correlation pot.

The adiabatic approximation neglects any explicit time-dependence
of the exchange-correlation potential.

Vxc(ρ(r , t), t) = Vxc(ρ(r))|ρ(r)=ρ(r ,t) (1)

i.e. standard form of potential with the time-dependent density.

Standard exchange-correlation potentials are used

GGA potentials like BLYP.

Hybrid GGA potentials with exact exchange like B3LYP.

GGA potentials with modified long-range exchange like CAM-B3LYP.

A prefix A is sometimes used to stress that the adiabatic
approximation is used.
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Density Functional Response Theory: The linear Response

Function

〈〈A;B〉〉ω = −V[1]T
A (E[2] − ωS[2])−1V

[1]
B

E[2] for functionals without exact exchange

E[2] =

(
A B

B A

)

AAI ,BJ = δIJδAB(ǫA − ǫI ) + (IA|BJ) + Vxc(AI ,BJ)

BAI ,BJ = −(IA|JB)− Vxc(AI ,BJ)

Compared to Hartree-Fock

No exchange → no exchange integrals (IJ|AB).

Exchange-Correlation functional → Vxc(AI ,BJ).

(A+ B)AI ,BJ = δIJδAB(ǫA − ǫI )

Diagonal structure of A+ B allows simplifications.
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Problems with the current xc-potentials 1: Charge-transfer

excitations

Wrong long-range behaviour of standard xc-functionals

Standard xc-potentials without exact exchange falls off too fast
compared to the exact- typically exponential rather than 1/r .

xc-functionals that becomes exact exchange for large distances have
been devised and exhibit the correct long-range behaviour.

Wrong long-range behaviour → errors for charge-transfer states.

Analysis of the elements in A,B for charge transfer complex

Assume excitation where occ. and virt. orbitals do not overlap.
1 AAI ,BJ = δIJδAB (ǫA − ǫI ) + (IA|BJ) + Vxc(AI ,BJ)→ δIJδAB(ǫA − ǫI )
2 BAI ,BJ = −(IA|JB) − Vxc(AI ,BJ)→ 0

Therefore

Excitation energy goes towards the orbital energy difference ǫA − ǫI .

HF: Exchange term, −(IJ|AB) → correct 1/R .
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Problems with the current xc-potentials 2: Lack of double

and higher excitations

The DFT linear response equations are single excitation equations

The DFT and HF linear response equations are similar and solves a
generalized eigenvalue problem in the space of single excitations.

Doubly excited electronically states do therefore not occur.

Ways of introducing double excitations

Introduce time-/frequency-dependent xc-functionals.

Use ensemble or MCSCF-DFT rather than pure-state DFT.

Develop DFT methods in analogy with the standard QC methods for
obtaining double excitations.

Density matrix rather than density methods.

...
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Benchmarking DFT excitation energies: D. Jaquemin, W.

Wathelet,E.A. Perpete, and C. Adamo (Namur), JCTC 5,
2420-2435(2009)

Very extensive benchmark

Contains more than 700 excitation energies.

29 Functionals.

Compare both to theory and experiment.

Functionals in use

Type of functional Examples

LDA SVWN5
GGA BP86, BLYP, OLEP, PBE
Meta-GGA VSXC, τ -HCTC, TPSS
Global Hybrids B3LYP, mPW91PW91, O3LYP

X3LYP, ....
Long range corrected hybrids LC versions of GGA and meta-GGA
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Benchmarking DFT excitation energies: D. Jaquemin, W.

Wathelet,E.A. Perpete, and C. Adamo (Namur), JCTC 5,
2420-2435(2009)

Conclusions

Most accurate results: Global hybrids 22 - 25 % exchange: X3LYP,
B98, .. or long-range corrected hybrid.

CAM-B3LYP does well, but does not in general outperform B3LYP

Average errors of the best functionals: about 0.25 eV.

Comparable to CC2.
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Coupled Cluster Theory

Standard Time-independent Coupled Cluster expansions

|CC〉 = exp(T̂ )|HF〉.
|CC〉 = |HF〉+ |Correlation〉 → intermediate normalized form.

T̂ includes all excitations up to a max excitation level m:
T̂ = T̂1 + T̂2 + T̂3 + · · ·+ T̂m.

The operator T̂ is a weighted sum of excitations T̂ =
∑

µ tµτµ.

The parameters tµ are determined in the CC calculation.

The excitation operators commute [τµ, τν ] = 0.

Problem

〈CC|H|CC〉 = 〈HF| exp T̂ †H exp T̂ |HF〉 is cumbersome to evaluate
→ standard variational approaches are not feasible.

〈HF| exp(−T̂ )H exp(T̂ )|HF〉 may be calculated.

Use projection methods instead of variational methods.
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Coupled Cluster Theory

The time-independent Coupled Cluster equations

The Schrödinger equation: H exp(T̂ )|HF〉 = E exp(T̂ )|HF〉.
Multiply with exp(−T̂ ): exp(−T̂ )H exp(T̂ )|HF〉 = E |HF〉
(manifestly extensive form).

Projecting by 〈HF| gives the energy
E = 〈HF| exp(−T̂ )H exp(T̂ )|HF〉.
Projecting with 〈HF|τ †µ gives the CC equations

Ωµ = 〈HF|τ †µ exp(−T̂ )H exp(T̂ )|HF〉 = 0.

In the following

The T̂ operator for the reference state is T̂ (0).

The CC wave function for the reference state is
|CC(0)〉 = exp(T̂ (0))|HF〉.
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The EOM approach to excited states

EOM-CC?

A simple way to obtain formulaes for the excitation energies.

Same excitation energies as response, but different properties.

Explicit form of the excited state

|exc〉 =
∑

µ cµτµ|CC(0)〉.
The unit operator is also included in the sum over µ.

Linear parameterization of the excitation, will give problems later..

Equation for determining c

Schrödinger equation for |exc〉: H|exc〉 = Eexc |exc〉.
Project from left with 〈µ̄| = 〈HF|τ †µ exp(−T̂ (0)).

∑

ν

〈µ̄|Hτν |CC(0)〉Cν = EexcCµ.
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The EOM approach to excited states
Matrix form of equations

(
∑

ν〈µ̄|Hτν |CC(0)〉Cν = EexcCµ)

In matrix form

HC = EexcC , Hµν = 〈µ̄|Hτν |CC(0)〉.

The blocks of H - Partition into HF-part(0) and excitation part (µ)

H00 = 〈HF|H|CC(0)〉 = ECC .

Hµ0 = 〈µ̄|H|CC(0)〉 = 0, H0µ = ηµ.

Hµ,ν = 〈µ̄|Hτν |CC(0)〉 = 〈µ̄|[H, τν ]|CC(0)〉+ 〈µ̄|τνH|CC(0)〉 =
Aµν + Eccδµν , Aµν is the CC Jacobian.

H =

(
H00 H0ν

Hµ0 Hµν

)
=

(
0 η

0 A

)
+ ECC1
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The EOM approach to excited states
Equivalence between excitation energies in EOM-CC and LR-CC

Conclusion on the form of H

H =

(
0 η

0 A

)
+ ECC1

Excitation energies are obtained as

In LR-CC (linear response CC), excitation energies are obtained as
eigenvalues of A.

In EOM-CC, excitation energies are obtained as eigenvalues of H

But

Due to the simple form of the first column of H , the (nontrivial)
eigenvalues of H ,A are identical.

So: EOM-CC and LR-CC gives identical excitation energies.
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EOM-CC excitation energies and operators

The EOM-CC Hamiltonian matrix A is not symmetric

A complete set of eigenvectors is not garanteed ( A is not normal).

Different left and right eigen-vectors, but common eigenvalues.

ARi = ωiRi (2)

L
T
i A = ωiL

T
i (3)

Left and right eigenvectors are orthonormal, LT
i Rj = δij

If a complete basis exists, the resolution of the identity is
∑

i L
T
i Ri .

Left and right excited states differs

〈i | =∑µ Lµi 〈µ̄|.
|i〉 =∑µ Rµi τµ|CC(0)〉.
Differs both in expansion coeffcients and vectors.

Only small differences when the CC methods are accurate.
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EOM-CC excitation energies and operators

Matrix elements between two states, i , f

We have left and right representations of both states

〈ī | =
∑

µ
Lµi 〈µ̄|, 〈f̄ | =

∑
µ
Lµf 〈µ̄|.

|i〉 =∑
µ
Rµiτµ|CC(0)〉, |f 〉 =∑

µ
Rµf τµ|CC(0)〉.

Several possible ways of defining a transition moment between i and f.

1 〈ī |r |f 〉.
2 〈f̄ |r |i〉.
3

√
〈ī |r |f 〉〈f̄ |r |i〉.

The third form is normally used

Other terms in EOM-CC

Start out from standard expression of exact states

Insert forms for left and right states and energies

Symmetrize as above
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General comments on EOM-CC

Problems with several ways of defining a transition property - ugly

Also more fundamental problems:

Polarizabilities are not extensive
Transition moments are not intensive

Usually, deviations are small

Deviations are caused by the simple linear ansatz for the excited states

So: EOM-CC is simple, but there is a price for this simplicity
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The Response approach to CC theory - in brief

Solve time-dependent equations

The CC state satisfies a modified TDSE

Why modified? The TDSE conserves the norm of the wave function,
in CC theory we have 〈HF|CC〉 = 1, so the norm is not conserved.

A Lagrangian form of the CC quasi-energy may then be constructed

Stationary points of this Lagrangian is then obtained to give
time-development of CC amplitudes

From this, we may obtain CC response functions, and from these
excitation energies, transition moments, polarizabilities..

Formally, significantly more complex than EOM-CC, but in general
similar scaling

Excitation energies turn out to be identical in CC response and
EOM-CC

All terms have now the correct extensivity or intensivity
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Coupled Cluster response models

The full models

For the standard CCSD, CCSDT, CCSDTQ models, there is a
corresponding response models

The CCSD and CCSDT response models have been explicitly coded

The CCSDTQ and higher models have been implemented using
general techniques (spin-strings and/or the tensor-contraction engine)

The operation counts are the same for the response and the energy
models

The CCSD/CCSDT models scales therefore as sixth/eigth power of
the system size
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Coupled Cluster response models

Approximate models

In analogy with the standard energy approaches, methods that
approximate the CCSD, CCSDT, ... full response models have been
implemented

Important approximate models are:

CC2 MP2-like, fifth-order scaling
CC3 CCSD(T)-like, seventh-order scaling

A convenient rewrite

exp−(T̂1 + T̂2)H exp(T̂1 + T̂2) = exp−(T̂2)H̃ exp(T̂2)

H̃ = exp−(T̂1)H exp(T̂1) is like normal Hamiltonian - with modified
integrals.

Used in the following
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The CCSD response model (1:singles, 2: doubles)

The A-matrix: 〈HF|τ †µ exp(−T̂2)[H̃ , τν] exp T̂2|HF〉

(
A11 A12

A21 A22

)

A11

〈HF|τ †1 exp(−T̂2)[H̃ , τ1] exp T̂2|HF〉 = 〈HF|τ †1 [H̃ , τ1]|HF〉
+ 〈HF|τ †1 [[H̃ , τ1], T̂2]︸ ︷︷ ︸

Single or higher

|HF〉+ 〈HF|τ †1 [[[H̃ , τ1], T̂2], T̂2]︸ ︷︷ ︸
Triple or higher →0

|HF〉

= 〈HF|τ †1 [H̃ , τ̂1]|HF〉+ 〈HF|τ †1 [[H̃ , τ̂1], T̂2]|HF〉
The other blocks are obtained in a similar fashion

A21 = 〈HF|τ †2 [H̃ , τ1]|HF〉+ 〈HF|τ †2 [[H̃ , τ1], T̂2]|HF〉
A12 = 〈HF|τ †1 [H̃ , τ2]|HF〉
A22 = 〈HF|τ †2 [H̃ , τ2]|HF〉+ 〈HF|τ †2 [[H̃ , τ2], T̂2]|HF〉
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The CC2 response model as an approximation to CCSD

The A-matrix
(

A11 A12

A21 A22

)

Simplifications from CCSD

The sixth-order step in CCSD arises from the A22 block.

Include only part of A22 that give second-order terms to single excit.

Gives a diagonal form of A22 containing orbital energies.

In A21 only the lowest order terms is retained.

hatT1, T̂2 are obtained in N5 procedure, not CCSD.

Partitioned form of the CC2-equations (1:singles, 2: doubles)

Allows a rewrite of the CC2 equation to an effective singles-equation

∑

ν1

(
Aµ1,ν1 −

∑

µ2

Aµ1,µ2Aµ2,ν1

(Ad
µ2,µ2

− ω)

)
Cν1 = ωCµ1
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Benchmarks of CC2, CCSD, CC3, CCSDT

Comparison with FCI for small molecules

Predominately single excited states, but also som double excitations

Both singlet and triplet excited states

Singlet states are more often multiconfigurational than triplet states

Singlet single excitation dominated states in table below

Method Mean abs. deviation Max deviation

CC2 0.46 eV 1.08 eV
CCSD 0.12 eV 0.23 eV
CC3 0.016 eV 0.071 eV

CCSDT 0.025 eV 0.050 eV

Clear improvement CC2 → CCSD → CC3

CC3 and CCSDT have here comparable accuracy
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Benchmarks of CC2, CCSD, CC3, CCSDT

Benchmark with experiment: (W. Thiel et al, J. Chem. Phys. 128,
134110 (2008)

A group of 28 smaller organic molecules including unsaturated and
aromatic compounds

MP2/6-31G* basis set optimization

Excitation energies calculated using the TZVP basis - no diffuse basis
functions

Compared to best experimental estimate

Method Mean abs. deviation Std. deviation Max deviation

CC2 0.32 eV 0.41 eV 1.25 eV
CCSD 0.50 eV 0.58 eV 1.62 eV
CC3 0.22 eV 0.27 eV 0.83 eV

CASPT 0.35 eV 0.42 eV 1.02 eV

Systematic improvements less pronounced
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Benchmarks of CC2, CCSD, CC3, CCSDT

Benchmark with experiment: (W. Thiel et al, J. Chem. Phys. 128,
134110 (2008)

Separate analysis was carried out for single excitation dominated
states: |T1| atleast 90 % of total norm

This should be the ideal show case for CC3

Method Mean abs. deviation Std. deviation Max deviation

CC2 0.22 eV 0.27 eV 0.64 eV
CCSD 0.37 eV 0.42 eV 0.81 eV
CC3 0.22 eV 0.26 eV 0.49 eV

CASPT 0.36 eV 0.44 eV 0.99 eV

No significant improvement CC2 → CCSD → CC3!
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Second-order approximations to CCSD

CC2

Approximates CCSD Jacobian → asymmetric matrix, iterative N5 step

ADC(2)

Starts from standard energy form → symmetric matrix, standard
MP-expansion, iterative N5 step.

Obtained from CC2 by eliminating T1 and symmetrizing matrix.

Results in general similar to CC2, but symmetric matrix is important
for conical intersection.

CIS(D)

Starts from CIS excitation energy, non-iterative N5 step.

CPS(D-2)

Starts from CCS (=CIS) excitation energy, non-iterative N5 step
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EOM-CC versus Response-CC

Excitation energies

Obtained as eigenvalues of the Jacobian for both methods

EOM-CC and Response-CC gives identical excitation energies

Explicit representation of excited states?

In EOM-CC one has the explicit form of the excited states (in terms
of excitations from |CC(0)〉)
In response-CC there is no explicit representation of the excited
states- but all properties may be calculated

Transition moments, polarizabilities, ...

In Response-CC the properties are correctly intensive, due to the use
of the exponential parameterization for the TD part of the wf

In EOM-CC the properties are not intensive, due to the use of a linear
parameterization of the TD part
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An overview of the most used response methods

Standard model → response model

Standard wavefunction Corresponding linear response

HF TDHF=RPA=LRHF
MCSCF LR-MCSCF
DFT TDDFT
MP2 CC2, SOPPA, ADC(2)
CCSD LR-CCSD, EOM-CCSD

CCSD(T) CC3

Similar computational complexity and limitations

A response model and the corresponding wave-function model have
typical identical scaling of operation counts

Response models are typically iterative, many states are sought →
higher timings and storage requirements
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Conclusions

Theory

A wealth of different physical properties may be obtained in a
coherent fashion

May be used for standard wave-function models including HF, DFT,
CI, CC

Highly excited states may be obtained

Still a lot to be done
1 High intensity lasers

Higher orders
Breakdown of perturbation theory (for time-dependent perturbation)
Solve equations directly in time-domain
Improved, nonadiabatic, TD exchange-correlation potential.

2 General Theories

Better CC theories to treat double excited states
Better CC theories to treat static correlation
CASPT-, NEVPT- based methods
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