

Relativistic quantum chemistry

Trond Saue

Laboratoire de Chimie et Physique Quantiques

CNRS/Université de Toulouse (Paul Sabatier)

118 route de Narbonne, 31062 Toulouse, France
e-mail: trond.saue@irsamc.ups-tlse.fr

The Dirac village

Our playground: the periodic table

The periodic table ... of 1871

Tabelle II.

8 4 4	Grappe I. B^{10}	Gruppe II. $\overline{\mathrm{RO}}$	Gruppe III. $\mathrm{B}^{2} 0^{3}$	Gruppe IV. RH4 R 0^{4}	$\begin{aligned} & \text { Gruppo } V . \\ & \mathbf{R H a}^{3} \\ & \mathbf{H}^{3} 0^{5} \end{aligned}$	$\begin{gathered} \text { Gruppe VL } \\ \text { RH }^{2} \\ \text { RO }^{3} \end{gathered}$	$\begin{gathered} \text { Gruppe VII } \\ \text { RH } \\ \mathbf{R}^{2} \mathbf{0}^{7} \end{gathered}$	$\begin{gathered} \text { Gruppe VIII. } \\ \overline{\mathbf{R O}}{ }^{4} \end{gathered}$
\%	$L_{i=7} \mathrm{H}=1$	$\mathrm{Be}=9,4$	$B=11$	$\mathrm{C}=12$	$\mathrm{N}=14$	$0=16$	$\mathrm{F}=19$	
8	$\begin{aligned} & \mathrm{Ki}=23 \\ & \mathrm{~K}=39 \end{aligned}$	$\begin{aligned} & \mathrm{Mg}=24 \\ & \mathrm{Ca}=40 \end{aligned}$	$\begin{aligned} & \mathrm{Al}=27,3 \\ & -=44 \end{aligned}$	$\begin{aligned} & 8 \mathrm{i}=28 \\ & \mathrm{Ti}=48 \end{aligned}$	$\mathrm{V}=51_{\mathrm{P}=31}$	$C_{r=52}^{S=32}$	$\begin{array}{r} \mathrm{Cl}=35,5 \\ \mathrm{Mn}=55 \end{array}$	$\begin{aligned} \mathrm{Fe}=56, \quad \mathrm{Co}=59 \\ \mathrm{Ni}=59, \mathrm{Cu}=63 . \end{aligned}$
b	$\begin{aligned} & \quad(\mathrm{Cu}=68) \\ & \mathrm{Bb}=85 \end{aligned}$	$\begin{array}{r} \mathrm{Zn}=65 \\ \mathrm{gr}=87 \end{array}$	$\begin{array}{r} -=68 \\ \mathrm{YYt}=88 \end{array}$	$\mathrm{Zr}=90$	$\begin{aligned} & \mathrm{As}=75 \\ & \mathrm{Nb}=94 \end{aligned}$	$\begin{array}{r} \mathrm{Se}=78 \\ \mathrm{Mo}=96 \end{array}$	$\begin{array}{r} \mathrm{Br}=80 \\ -=100 \end{array}$	$\begin{gathered} \mathrm{Ru}=104, \mathrm{Rh}=104, \\ \mathrm{Pd}=106, \mathrm{Ag}=108 . \end{gathered}$
1	$\begin{gathered} (\mathrm{dg}=108) \\ \mathrm{C}=133 \end{gathered}$	$\begin{array}{r} \mathrm{Cd}=112 \\ \mathrm{Ba}=137 \end{array}$	$\begin{array}{r} \mathrm{In}=113 \\ \mathrm{DDi}=138 \end{array}$	$\begin{aligned} & \mathrm{Sn}=118 \\ & ? \mathrm{Ce}=140 \end{aligned}$	$\mathrm{Sb}=122$	$\mathrm{Te}=125$	$\begin{array}{r} J=127 \\ - \end{array}$	
18	$(-)$		$\mathrm{PBr}=178$	$P L a=180$	$\mathrm{Ta}=182$	$W=184$	-	$\begin{gathered} \mathrm{Os}=195, \mathrm{Ir}=197, \\ \mathrm{Pt}=198, \mathrm{Au}=199 . \end{gathered}$
11	$\left(A_{0}=199\right)$	Hg=200	$\mathrm{T}=204$	$\begin{gathered} \mathrm{Pb}=207 \\ \mathrm{Th}=231 \end{gathered}$	$-\quad \mathrm{Bi}=208$	$\mathrm{U}=240$	- -	- - - -

The periodic table ... of 1871

Tabelle II.

\%	Grappe I. B^{10}	Gruppe II. $\overline{\mathrm{RO}}$	$\begin{gathered} \text { Gruppe IIL } \\ \mathbb{R}^{2} 0^{3} \end{gathered}$	Gruppe IV. RH4 H 0^{2}	$\begin{aligned} & \text { Gruppo } V . \\ & \mathrm{RH}^{3} \\ & \mathrm{H}^{2} 0^{5} \end{aligned}$	Gruppe VL RH: 10^{3}	Gruppe VII. R $\mathrm{B}^{2} \mathbf{O}^{7}$	Gruppe VIII. $\overrightarrow{R 04}$
1	$L_{i=7}^{H=1}$	$\mathrm{Be}=9,4$	$B=11$	$\mathrm{C}=12$	$\mathrm{N}=14$	$0=16$	$\mathrm{F}=19$	
8	$\begin{aligned} & \mathrm{Ki}=23 \\ & \mathrm{~K}=39 \end{aligned}$	$\begin{aligned} & \mathrm{Mg}=24 \\ & \mathrm{Ca}=40 \end{aligned}$	$\begin{gathered} \mathrm{Al}=27,3 \\ -=44 \end{gathered}$	$\begin{aligned} & 8 \mathrm{i}=28 \\ & \mathrm{Ti}=48 \end{aligned}$	$\mathrm{V}=51_{\mathrm{P}=31}$	$\begin{array}{r} \mathrm{S}=32 \\ \mathrm{Cr}_{r}=52 \end{array}$	$\begin{array}{r} \mathrm{Cl}=35,5 \\ \mathrm{Mn}=55 \end{array}$	$\begin{aligned} \mathrm{Fe}=56, \quad \mathrm{Co}=59 \\ \mathrm{Ni}=59, \mathrm{Cu}=63 . \end{aligned}$
f	$\begin{array}{r} \quad(\mathrm{Cu}=68) \\ \mathrm{Bb}=85 \end{array}$	$\begin{array}{r} \mathrm{Zn}=65 \\ \mathrm{gr}=87 \end{array}$	$\begin{array}{r} -=68 \\ \mathrm{YY}=88 \end{array}$	$\begin{array}{r} -=72 \\ \mathrm{Zr}=90 \end{array}$	$\begin{aligned} & \mathrm{As}=75 \\ & \mathrm{Nb}=94 \end{aligned}$	$\begin{array}{r} \mathrm{Se}=78 \\ \mathrm{Mo}=96 \end{array}$	$\begin{array}{r} \mathrm{Br}=80 \\ -=100 \end{array}$	$\begin{gathered} \mathrm{Ru}=104, \mathrm{Rh}=104, \\ \mathrm{Pd}=106, \mathrm{Ag}=108 . \end{gathered}$
1	$\begin{gathered} (\mathrm{dg}=108) \\ \mathrm{C}=133 \end{gathered}$	$\begin{gathered} \mathrm{Cd}=112 \\ \mathrm{Ba}=137 \end{gathered}$	$\begin{array}{r} \mathrm{In}=113 \\ ? \mathrm{Di}=138 \end{array}$	$\begin{array}{r} \mathrm{Sn}=118 \\ ? \mathrm{Ce}=140 \end{array}$	$\mathrm{Sb}=122$	$T e=125$	$\mathrm{J}=127$	$----$
1	$(-)$		$7 \mathrm{Er}=178$	$? \mathrm{La}=180^{-}$	$\mathrm{Ta}=182$	$W=184$	-	$\begin{gathered} \mathrm{Os}=195, \mathrm{Ir}=197, \\ \mathrm{Pt}=198, \mathrm{Au}=199 . \end{gathered}$
11	$(A \mathrm{n}=199)$	$\begin{array}{r} \mathrm{Hg}=200 \\ - \end{array}$	$T=204$	$\begin{gathered} \mathrm{Pb}=207 \\ \mathrm{Th}=231 \end{gathered}$	$-\quad \mathrm{Bi}=208$	$\mathrm{U}=240$	- -	- - - -

eka-aluminium:

The periodic table ... of 1871

Tabelle II.

8 8 8	Grappe I. B^{10}	Gruppe II. $\overline{\mathrm{RO}}$	Gruppe III. $\overline{\mathbf{R}^{2} 0^{s}}$	Gruppe IV. RH4 H 0^{2}	$\begin{gathered} \text { Gruppo } V \text {. } \\ \mathbf{R H}^{3} \\ \mathbf{H}^{2} 0^{s} \end{gathered}$	$\begin{gathered} \text { Gruppe VL } \\ \mathrm{RH}^{\mathbf{2}} \\ \mathbf{R O}^{3} \end{gathered}$	Gruppe VII. RH $\mathrm{R}^{*} 0^{7}$	Gruppe VIII. $\overline{\mathbf{R O}}$
1	$L^{H=7^{\prime}}$	$\mathrm{Be}=9,4$	$B=11$	$C=12$	$\mathrm{N}=14$	$0=16$	$\mathrm{F}=19$	
8	$\begin{array}{r} \mathrm{Na}=23 \\ \mathrm{~K}=39 \end{array}$	$\begin{array}{r} \mathrm{Mg}=24 \\ \mathrm{Cs}=40 \end{array}$	$\begin{aligned} & \mathrm{Al}=27,3 \\ & -=44 \end{aligned}$	$\begin{array}{r} 8 \mathrm{i}=28 \\ \mathrm{Ti}=48 \end{array}$	$\mathrm{V}_{5} \mathrm{P}=31$	$\mathrm{Cr}_{r=52}^{\mathrm{S}=32}$	$\begin{array}{r} \mathrm{Cl}=35,5 \\ \mathrm{Mn}=55 \end{array}$	$\begin{aligned} & \mathrm{Fe}=56, \quad \mathrm{Co}=59 \\ & \mathrm{Ni}=59, \mathrm{Cu}=63 . \end{aligned}$
f	$\begin{aligned} & \quad(\mathrm{Cu}=68) \\ & \mathrm{Bb}=85 \end{aligned}$	$\begin{array}{r} \mathrm{Zn}=65 \\ \mathrm{Sr}=87 \end{array}$	$\begin{array}{r} -=68 \\ \mathrm{PY}=88 \end{array}$	$\mathrm{Zr}=90$	$\begin{aligned} & \mathrm{As}=75 \\ & \mathrm{Nb}=94 \end{aligned}$	$\begin{array}{r} \mathrm{Se}=78 \\ \mathrm{Mo}=96 \end{array}$	$\begin{array}{r} \mathrm{Br}=80 \\ -=100 \end{array}$	$\begin{gathered} \mathrm{Ru}=104, \mathrm{Rh}=104, \\ \mathrm{Pd}=106, \mathrm{Ag}=108 . \end{gathered}$
1	$\begin{gathered} (\mathrm{Ag}=108) \\ \mathrm{C}=133 \end{gathered}$	$\begin{gathered} \mathrm{Cd}=112 \\ \mathrm{Ba}=137 \end{gathered}$	$\begin{array}{r} \mathrm{In}=113 \\ \text { ?Di }=138 \end{array}$	$\begin{array}{r} \mathrm{Sn}=118 \\ ? \mathrm{Ce}=140 \end{array}$	$\mathrm{Sb}=122$	$T e=125$	$\mathrm{J}=127$	-
\%	$(-)$		$7 \mathrm{Br}=178$	$? L a=180$	$\mathrm{Ta}=182$	$W=184$	-	$\begin{gathered} \mathrm{Os}=195, \mathrm{Ir}=197, \\ \mathrm{Pt}=198, \mathrm{Au}=199 . \end{gathered}$
11	$\left(\mathrm{A}_{\mathrm{n}}=199\right)$	- $\mathrm{Hg}=200$	$\mathrm{Tl}=204$	$\begin{gathered} \mathrm{Pb}=207 \\ \mathrm{Th}=231 \end{gathered}$	$B \mathrm{Bi}=208$	$\mathrm{U}=240$	- -	- - - -

eka-aluminium: gallium (1875)

eka-silicon:
germanium (1886)

The periodic table ... of 1871

Tabelle II.

8 4 4	Groppe I. B^{10}	Gruppe II. $\overline{\mathrm{RO}}$	$\begin{gathered} \text { Gruppe III. } \\ \frac{R^{2} 0^{3}}{} \end{gathered}$	Gruppe IV. RH4 H0 ${ }^{2}$	$\begin{gathered} \text { Gruppo } V . \\ \mathrm{RH}^{3} \\ \mathrm{H}^{2} 0^{5} \end{gathered}$	$\begin{gathered} \text { Gruppe VL } \\ \mathrm{RH}^{2} \\ \mathrm{RO}^{3} \end{gathered}$	Gruppe VII. RH $\mathrm{H}^{2} \mathbf{0}^{7}$	Gruppe VIII. R 0^{4}
	$L^{H=7^{\prime}}$	$\mathrm{Be}=9,4$	$B=11$	$\mathrm{C}=12$	$\mathrm{N}=14$	$0=16$	$\mathrm{F}=19$	
8	$\begin{array}{r} \mathrm{Na}=23 \\ \mathrm{~K}=39 \end{array}$	$\begin{aligned} & \mathrm{Mg}=24 \\ & \mathrm{Ca}=40 \end{aligned}$	$\begin{aligned} & \mathrm{Al}=27,3 \\ & -=44 \end{aligned}$	$\begin{aligned} & 8 \mathrm{i}=28 \\ & \mathrm{Ti}=48 \end{aligned}$	${ }_{V=51}^{P=31}$	$\begin{array}{r} \mathrm{S}=32 \\ \mathrm{Cr}_{r}=52 \end{array}$	$\begin{array}{r} \mathrm{Cl}=35,5 \\ \mathrm{Mn}=55 \end{array}$	$\begin{aligned} & \mathrm{Fe}=56, \quad \mathrm{Co}=59 \\ & \mathrm{Ni}=59, \mathrm{Cu}=63 . \end{aligned}$
\downarrow	$\begin{aligned} & (\mathrm{Cu}=68) \\ & \mathrm{Bb}=85 \end{aligned}$	$\begin{array}{r} \mathrm{Zn}=65 \\ \mathrm{gr}=87 \end{array}$	$\begin{array}{r} -=68 \\ \mathrm{PY}=88 \end{array}$	$\begin{aligned} & -=72 \\ & \mathrm{Zr}=90 \end{aligned}$	$\begin{aligned} & \mathrm{As}=75 \\ & \mathrm{Nb}=94 \end{aligned}$	$\begin{array}{r} \mathrm{Se}=78 \\ \mathrm{Mo}=96 \end{array}$	$\begin{aligned} & \mathrm{Br}=80 \\ &-= 100 \end{aligned}$	$\begin{gathered} \mathrm{Ru}=104, \mathrm{Rh}=104, \\ \mathrm{Pd}=106, \mathrm{Ag}=108 . \end{gathered}$
1	$\begin{gathered} (\mathrm{dg}=108) \\ \mathrm{Cs}=133 \end{gathered}$	$\begin{gathered} \mathrm{Cd}=112 \\ \mathrm{Ba}=137 \end{gathered}$	$\left\{\begin{array}{r} \mathrm{In}=118 \\ 2 \mathrm{D} i=138 \end{array}\right.$	$\begin{aligned} & \quad \mathrm{Sn}=118 \\ & ? \mathrm{Ce}=140 \end{aligned}$	$\mathrm{Sb}=122$	$T e=125$	$\mathrm{J}=127$	- - -
1					-	-	-	
\%			$\eta \mathrm{Br}=178$	$? L a=180$	$\mathrm{Ta}=182$	$W=184$	-	$\begin{gathered} \mathrm{Os}=195, \mathrm{Ir}=197, \\ \mathrm{Pt}=198, \mathrm{Au}=199 . \end{gathered}$
11	($\mathrm{A}=199$)	$\mathrm{Hg}=200$	$\mathrm{Tl}=204$	$\mathrm{Pb}=207$	$\mathrm{Bi}=208$		-	
18	-	- 1	-	$\mathrm{Th}=231$	-	$\mathrm{U}=240$	-	- - - -

eka-aluminium: gallium (1875)

eka-silicon:
germanium (1886)

eka-boron: scandium (1879)

Broken trends

Relativistic effects

- scalar effects
- spin-orbit interaction

Lorentz factor:

$$
\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

Goldschmidt and Einstein in Norway 1920

Broken trends

Relativistic effects

- scalar effects
- spin-orbit interaction

Lorentz factor:

$$
\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

Lanthanide contraction
V.M. Goldschmidt, T. Barth, G. Lunde:

Norske Vidensk. Selsk. Skrifter I Mat. Naturv. Kl. 7, 1 (1925)
D. R. Lloỵ̆, J. Chem. Ed. 63 (1986) 503

- $\mathrm{La}^{3+}-\mathrm{Lu}^{\mathrm{K}+}(117.2-100.1 \mathrm{pm})$
- $\mathrm{Ca}^{2+}-\mathrm{Zn}^{2+}(114-88 \mathrm{pm})$
- $\mathrm{Cu}(138 \mathrm{pm})<\mathrm{Au}(144 \mathrm{pm})$ $<\mathrm{Ag}(153 \mathrm{pm})$

P.S.Bagus et al., Chem. Phys. Lett. 33 (1975) 408

lonization energy of gold

O. Fossgaard, O. Gropen, E. Eliav and T. Saue, J. Chem. Phys. 119 (2003) 9355

Electron affinity of gold

O. Fossgaard, O. Gropen, E. Eliav and T. Saue, J. Chem. Phys. 119 (2003) 9355

Electron affinity of gold

O. Fossgaard, O. Gropen, E. Eliav and T. Saue, J. Chem. Phys. 119 (2003) 9355

- Gold and caesium are extremes on the electron affinity scale - 2.309 eV vs. 0.472 eV

Electron affinity of gold

O. Fossgaard, O. Gropen, E. Eliav and T. Saue, J. Chem. Phys. 119 (2003) 9355

- Gold and caesium are extremes on the electron affinity scale - 2.309 eV vs. 0.472 eV
- CsAu is a semi-conductor with a CsCl crystal structure in the solid state; it forms an ionic melt. The oxidation state of gold is -I.

Spectroscopic constants of CsAu and homologues

O. Fossgaard, O. Gropen, E. Eliav and T. Saue, J. Chem. Phys. 119 (2003) 9355

	Method		$r_{e}(\mathrm{pm})$	$\omega_{e}\left(\mathrm{~cm}^{-1}\right)$	$\omega_{e} x_{e}\left(\mathrm{~cm}^{-1}\right)$	$D_{e}^{\text {cov }}(\mathrm{eV})$	$\mu(\mathrm{D})$
$\mathbf{C s A u}$	CCSD(T)	rel	326.3	89.4	0.21	2.52	11.73
		nrel	357.1	67.9	0.08	1.34	11.05
		nrel-ps	376.3	59.9	0.13	1.17	9.47
	Exp.[1]a		(320)	(125)		2.58 ± 0.03	
	Exp.[1]b		-	-	-	2.53 ± 0.03	-
$\mathbf{C s A g}$	CCSD(T)	rel	331.6	88.0	0.17	1.51	10.69
		nrel	345.9	78.5	0.02	1.26	10.89
$\mathbf{C s C u}$	CCSD(T)	rel	319.8	101.6	0.09	1.36	10.34
		nrel	327.7	97.1	0.18	1.31	10.88

1) B. Busse and K. G. Weil, Ber. Bunsenges. Phys. Chem. 85(1981) 309

Without relativity

Without relativity

.. gold would have the same color as silver

Without relativity

.. gold would have the same color as silver
...mercury would not be liquid at room temperature

Without relativity

.. gold would have the same color as silver
...mercury would not be liquid at room temperature
.. your car would not start

Einstein's special theory of relativity

Einstein's special theory of relativity

Reference frames

Reference frames

Reference frames

The theory of special relativity is restricted to inertial frames : reference frames related by constant velocity

Reference frames

The theory of special relativity is restricted to inertial frames : reference frames related by constant velocity It is based on two postulates:

The principle of relativity

The principle of relativity

1. The laws of motion are the same in all inertial frames

The principle of relativity

1. The laws of motion are the same in all inertial frames

Galileo Galilei (1632)

... but some frames may be better than others

... but some frames may be better than others

- Speed of boat with respect to the river bank: $3 \mathrm{~km} / \mathrm{h}$

... but some frames may be better than others

- Speed of boat with respect to the river bank: $3 \mathrm{~km} / \mathrm{h}$
- Speed of water with respect to the river bank: $7 \mathrm{~km} / \mathrm{h}$

... but some frames may be better than others

- Speed of boat with respect to the river bank: $3 \mathrm{~km} / \mathrm{h}$
- Speed of water with respect to the river bank: $7 \mathrm{~km} / \mathrm{h}$
- Hint: you do not need this information....

Einsteins contribution (1905)

2. The speed c of light is the same in all inertial frames

$$
\text { speed }=\frac{\text { distance }}{\text { time }}
$$

Einsteins contribution (1905)

2. The speed c of light is the same in all inertial frames

$$
\text { speed }=\frac{\text { distance }}{\text { time }}
$$

Implies plasticity of space and time

Simultaneity: a relative concept

Observer in the train:

$$
t_{b}=t_{a}
$$

Simultaneity: a relative concept

Observer in the train:

$$
t_{b}=t_{a}
$$

Simultaneity: a relative concept

Observer in the train:

$$
t_{b}=t_{a}
$$

Observer on the ground:

$$
t_{b}<t_{a}
$$

Simultaneity: a relative concept

Observer in the train:

$$
t_{b}=t_{a}
$$

Observer on the ground:

$$
t_{b}<t_{a}
$$

Two events that are simultaneous in one inertial frame are generally not so in another inertial frame.

Time dilation

Time dilation

Observer in the train:

$$
c \Delta \bar{t}=h
$$

Time dilation

Observer in the train:

$$
c \Delta \bar{t}=h
$$

Time dilation

Observer in the train:

$$
c \Delta \bar{t}=h
$$

Observer on the ground:

$$
c \Delta t=\sqrt{h^{2}+(v \Delta t)^{2}}
$$

Time dilation

Observer in the train:

$$
c \Delta \bar{t}=h
$$

Observer on the ground:

$$
c \Delta t=\sqrt{h^{2}+(v \Delta t)^{2}}
$$

$$
\Delta t=\gamma \Delta \bar{t}>\Delta \bar{t} ; \quad \text { Lorentz factor: } \quad \gamma=\frac{1}{\sqrt{1-v^{2} / c^{2}}}
$$

Time dilation

Observer in the train:

$$
c \Delta \bar{t}=h
$$

Observer on the ground:

$$
c \Delta t=\sqrt{h^{2}+(v \Delta t)^{2}}
$$

$$
\Delta t=\gamma \Delta \bar{t}>\Delta \bar{t} ; \quad \text { Lorentz factor: } \quad \gamma=\frac{1}{\sqrt{1-v^{2} / c^{2}}}
$$

Clocks in movement go slower.

Length contraction

Length contraction

Observer in the train:

$$
c \Delta \bar{t}=2 \Delta \bar{x}
$$

Length contraction

Length contraction

Observer in the train:

$$
c \Delta \bar{t}=2 \Delta \bar{x}
$$

Observer on the ground:

$$
\begin{aligned}
& c \Delta t_{1}=\Delta x+v \Delta t_{1} \\
& c \Delta t_{2}=\Delta x-v \Delta t_{2}
\end{aligned}
$$

Length contraction

Observer in the train:

$$
c \Delta \bar{t}=2 \Delta \bar{x}
$$

Observer on the ground:

$$
\begin{aligned}
& c \Delta t_{1}=\Delta x+v \Delta t_{1} \\
& c \Delta t_{2}=\Delta x-v \Delta t_{2}
\end{aligned}
$$

$$
\Delta t=\Delta t_{1}+\Delta t_{2}=\frac{\Delta x}{c-v}+\frac{\Delta x}{c+v}
$$

Length contraction

Observer in the train:

$$
c \Delta \bar{t}=2 \Delta \bar{x}
$$

Observer on the ground:

$$
\begin{aligned}
& c \Delta t_{1}=\Delta x+v \Delta t_{1} \\
& c \Delta t_{2}=\Delta x-v \Delta t_{2}
\end{aligned}
$$

$$
\begin{gathered}
\Delta t=\Delta t_{1}+\Delta t_{2}=\frac{\Delta x}{c-v}+\frac{\Delta x}{c+v} \\
\Delta t=2 \frac{\Delta x}{c} \gamma^{2}=\gamma \Delta \bar{t}=\gamma \frac{2 \Delta \bar{x}}{c}
\end{gathered}
$$

Length contraction

Observer in the train:

$$
c \Delta \bar{t}=2 \Delta \bar{x}
$$

Observer on the ground:

$$
\begin{aligned}
& c \Delta t_{1}=\Delta x+v \Delta t_{1} \\
& c \Delta t_{2}=\Delta x-v \Delta t_{2}
\end{aligned}
$$

$$
\begin{gathered}
\Delta t=\Delta t_{1}+\Delta t_{2}=\frac{\Delta x}{c-v}+\frac{\Delta x}{c+v} \\
\Delta t=2 \frac{\Delta x}{c} \gamma^{2}=\gamma \Delta \bar{t}=\gamma \frac{2 \Delta \bar{x}}{c}
\end{gathered}
$$

$$
\Delta \bar{x}=\gamma \Delta x
$$

An object in movement is contracted in the direction of movement

Paradox of the barn and the ladder

Lorentz transformation

$$
\begin{aligned}
& x=d+v t \\
& d= \begin{cases}\bar{x} ; & (\text { Galilei }) \\
\gamma^{-1} \bar{x} ; & \text { (Lorentz) }\end{cases} \\
& \bar{x}=\gamma(x-v t)
\end{aligned}
$$

Lorentz transformation

$$
\begin{aligned}
& x=\gamma(\bar{x}+v \bar{t}) \\
& \bar{t}=\gamma\left(t-\frac{v}{c^{2}} x\right)
\end{aligned}
$$

$$
\begin{aligned}
& x=d+v t \\
& d= \begin{cases}\bar{x} ; & \text { (Galilei) } \\
\gamma^{-1} \bar{x} ; & \text { (Lorentz) }\end{cases} \\
& \bar{x}=\gamma(x-v t)
\end{aligned}
$$

Let us look at a relativistic theory ...

Let us look at a relativistic theory ...

Electrodynamics

Maxwell's equations

(SI-based atomic units: $\hbar=m_{e}=e=4 \pi \varepsilon_{0}=1$)

- The homogeneous pair:

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot \mathbf{B} & =0 \\
\boldsymbol{\nabla} \times \mathbf{E}+\frac{\partial \mathbf{B}}{\partial t} & =\mathbf{0}
\end{aligned}
$$

Maxwell's equations

(SI-based atomic units: $\hbar=m_{e}=e=4 \pi \varepsilon_{0}=1$)

- The homogeneous pair:

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot \mathbf{B} & =0 \\
\boldsymbol{\nabla} \times \mathbf{E}+\frac{\partial \mathbf{B}}{\partial t} & =\mathbf{0}
\end{aligned}
$$

- The inhomogeneous pair includes sources: the charge density ρ and current density \mathbf{j} (c is the speed of light)

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot \mathbf{E} & =4 \pi \rho \\
\boldsymbol{\nabla} \times \mathbf{B}-\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t} & =\frac{4 \pi}{c^{2}} \mathbf{j}
\end{aligned}
$$

Maxwell's equations

(SI-based atomic units: $\hbar=m_{e}=e=4 \pi \varepsilon_{0}=1$)

- The homogeneous pair:

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot \mathbf{B} & =0 \\
\boldsymbol{\nabla} \times \mathbf{E}+\frac{\partial \mathbf{B}}{\partial t} & =\mathbf{0}
\end{aligned}
$$

- The inhomogeneous pair includes sources: the charge density ρ and current density \mathbf{j} (\mathbf{c} is the speed of light)

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot \mathbf{E} & =4 \pi \rho \\
\boldsymbol{\nabla} \times \mathbf{B}-\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t} & =\frac{4 \pi}{c^{2}} \mathbf{j}
\end{aligned}
$$

- Are the electric field \mathbf{E} and the magnetic field \mathbf{B} uniquely determined by their divergence $(\nabla \ldots \ldots)$ and curl $(\nabla \times \ldots)$?

Maxwell's equations: boundary conditions

- The answer is NO !!!!

The two vectors

$$
\begin{aligned}
& \mathbf{F}_{1}=(0,0,0) \\
& \mathbf{F}_{2}=(y z, z x, x y)
\end{aligned}
$$

both have zero divergence and zero curl

Maxwell's equations: boundary conditions

- The answer is NO !!!!

The two vectors

$$
\begin{aligned}
& \mathbf{F}_{1}=(0,0,0) \\
& \mathbf{F}_{2}=(y z, z x, x y)
\end{aligned}
$$

both have zero divergence and zero curl

- Boundary conditions must be introduced:

Maxwell's equations: boundary conditions

- The answer is NO !!!!

The two vectors

$$
\begin{aligned}
& \mathbf{F}_{1}=(0,0,0) \\
& \mathbf{F}_{2}=(y z, z x, x y)
\end{aligned}
$$

both have zero divergence and zero curl

- Boundary conditions must be introduced:
- E and B go to zero at infinity

The Helmholtz theorem

- The vector relation

$$
\nabla^{2} \mathbf{F}=\boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \mathbf{F})-\boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \mathbf{F})
$$

can also be seen as an equation

The Helmholtz theorem

- The vector relation

$$
\nabla^{2} \mathbf{F}=\nabla(\boldsymbol{\nabla} \cdot \mathbf{F})-\boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \mathbf{F})
$$

can also be seen as an equation

- and has solution

$$
\mathbf{F}(\mathbf{r})=-\nabla s(\mathbf{r})+\nabla \times \mathbf{v}(\mathbf{r})
$$

where

$$
s\left(\mathbf{r}_{1}\right)=\frac{1}{4 \pi} \int \frac{\boldsymbol{\nabla}_{2} \cdot \mathbf{F}\left(\mathbf{r}_{2}\right)}{r_{12}} d^{3} \mathbf{r}_{2} ; \quad \mathbf{v}\left(\mathbf{r}_{1}\right)=\frac{1}{4 \pi} \int \frac{\boldsymbol{\nabla}_{2} \times \mathbf{F}\left(\mathbf{r}_{2}\right)}{r_{12}} d^{3} \mathbf{r}_{2}
$$

The Helmholtz theorem

- The vector relation

$$
\nabla^{2} \mathbf{F}=\nabla(\boldsymbol{\nabla} \cdot \mathbf{F})-\boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \mathbf{F})
$$

can also be seen as an equation

- and has solution

$$
\mathbf{F}(\mathbf{r})=-\nabla s(\mathbf{r})+\nabla \times \mathbf{v}(\mathbf{r})
$$

where

$$
s\left(\mathbf{r}_{1}\right)=\frac{1}{4 \pi} \int \frac{\boldsymbol{\nabla}_{2} \cdot \mathbf{F}\left(\mathbf{r}_{2}\right)}{r_{12}} d^{3} \mathbf{r}_{2} ; \quad \mathbf{v}\left(\mathbf{r}_{1}\right)=\frac{1}{4 \pi} \int \frac{\boldsymbol{\nabla}_{2} \times \mathbf{F}\left(\mathbf{r}_{2}\right)}{r_{12}} d^{3} \mathbf{r}_{2}
$$

- The divergence and curl of \mathbf{F} must go to zero faster than $\frac{1}{r^{2}}$; otherwise the above integrals blow up in the limit.

The Helmholtz theorem

- The vector relation

$$
\nabla^{2} \mathbf{F}=\nabla(\boldsymbol{\nabla} \cdot \mathbf{F})-\boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \mathbf{F})
$$

can also be seen as an equation

- and has solution

$$
\mathbf{F}(\mathbf{r})=-\nabla s(\mathbf{r})+\nabla \times \mathbf{v}(\mathbf{r})
$$

where

$$
s\left(\mathbf{r}_{1}\right)=\frac{1}{4 \pi} \int \frac{\boldsymbol{\nabla}_{2} \cdot \mathbf{F}\left(\mathbf{r}_{2}\right)}{r_{12}} d^{3} \mathbf{r}_{2} ; \quad \mathbf{v}\left(\mathbf{r}_{1}\right)=\frac{1}{4 \pi} \int \frac{\boldsymbol{\nabla}_{2} \times \mathbf{F}\left(\mathbf{r}_{2}\right)}{r_{12}} d^{3} \mathbf{r}_{2}
$$

- The divergence and curl of \mathbf{F} must go to zero faster than $\frac{1}{r^{2}}$; otherwise the above integrals blow up in the limit.
- This results show that we can reconstruct a vector function from knowledge of its divergence and curl combined with proper boundary conditions.

Jefimenko's solutions

- General solutions of Maxwell's equations are

$$
\begin{aligned}
\mathbf{E}\left(\mathbf{r}_{1}, t\right) & =\int\left\{\frac{\rho\left(\mathbf{r}_{2}, t_{r}\right) \mathbf{r}_{12}}{r_{12}^{3}}+\frac{\dot{\rho}\left(\mathbf{r}_{2}, t_{r}\right) \mathbf{r}_{12}}{r_{12}^{2}}-\frac{\dot{j}\left(\mathbf{r}_{2}, t_{r}\right)}{c^{2} r_{12}}\right\} d^{3} \mathbf{r}_{2} \\
\mathbf{B}\left(\mathbf{r}_{1}, t\right) & =\frac{1}{c^{2}} \int\left\{\frac{\mathbf{j}\left(\mathbf{r}_{2}, t_{r}\right) \times \mathbf{r}_{12}}{r_{12}^{3}}+\frac{\dot{j}\left(\mathbf{r}_{2}, t_{r}\right) \times r_{12}}{c r^{2}{ }_{12}}\right\} d^{3} \mathbf{r}_{2}
\end{aligned}
$$

Jefimenko's solutions

- General solutions of Maxwell's equations are

$$
\begin{aligned}
\mathbf{E}\left(\mathbf{r}_{1}, t\right) & =\int\left\{\frac{\rho\left(\mathbf{r}_{2}, t_{r}\right) \mathbf{r}_{12}}{r_{12}^{3}}+\frac{\dot{\rho}\left(\mathbf{r}_{2}, t_{r}\right) \mathbf{r}_{12}}{r_{12}^{2}}-\frac{\dot{j}\left(\mathbf{r}_{2}, t_{r}\right)}{c^{2} r_{12}}\right\} d^{3} \mathbf{r}_{2} \\
\mathbf{B}\left(\mathbf{r}_{1}, t\right) & =\frac{1}{c^{2}} \int\left\{\frac{\mathbf{j}\left(\mathbf{r}_{2}, t_{r}\right) \times \mathbf{r}_{12}}{r_{12}^{3}}+\frac{\dot{j}\left(\mathbf{r}_{2}, t_{r}\right) \times r_{12}}{c r^{2}{ }_{12}}\right\} d^{3} \mathbf{r}_{2}
\end{aligned}
$$

- Note that we can always add the solutions of the homogeneous (source-free) equations, that is, electromagnetic waves.

Jefimenko's solutions

- General solutions of Maxwell's equations are

$$
\begin{aligned}
\mathbf{E}\left(\mathbf{r}_{1}, t\right) & =\int\left\{\frac{\rho\left(\mathbf{r}_{2}, t_{r}\right) \mathbf{r}_{12}}{r_{12}^{3}}+\frac{\dot{\rho}\left(\mathbf{r}_{2}, t_{r}\right) \mathbf{r}_{12}}{r_{12}^{2}}-\frac{\dot{j}\left(\mathbf{r}_{2}, t_{r}\right)}{c^{2} r_{12}}\right\} d^{3} \mathbf{r}_{2} \\
\mathbf{B}\left(\mathbf{r}_{1}, t\right) & =\frac{1}{c^{2}} \int\left\{\frac{\mathbf{j}\left(\mathbf{r}_{2}, t_{r}\right) \times \mathbf{r}_{12}}{r_{12}^{3}}+\frac{\dot{j}\left(\mathbf{r}_{2}, t_{r}\right) \times r_{12}}{c r^{2}{ }_{12}}\right\} d^{3} \mathbf{r}_{2}
\end{aligned}
$$

- Note that we can always add the solutions of the homogeneous (source-free) equations, that is, electromagnetic waves.

- A nasty fellow:

Jefimenko's solutions

- General solutions of Maxwell's equations are

$$
\begin{aligned}
\mathbf{E}\left(\mathbf{r}_{1}, t\right) & =\int\left\{\frac{\rho\left(\mathbf{r}_{2}, t_{r}\right) \mathbf{r}_{12}}{r_{12}^{3}}+\frac{\dot{\rho}\left(\mathbf{r}_{2}, t_{r}\right) \mathbf{r}_{12}}{r_{12}^{2}}-\frac{\dot{j}\left(\mathbf{r}_{2}, t_{r}\right)}{c^{2} r_{12}}\right\} d^{3} \mathbf{r}_{2} \\
\mathbf{B}\left(\mathbf{r}_{1}, t\right) & =\frac{1}{c^{2}} \int\left\{\frac{\mathbf{j}\left(\mathbf{r}_{2}, t_{r}\right) \times \mathbf{r}_{12}}{r_{12}^{3}}+\frac{\dot{j}\left(\mathbf{r}_{2}, t_{r}\right) \times r_{12}}{c r^{2}{ }_{12}}\right\} d^{3} \mathbf{r}_{2}
\end{aligned}
$$

- Note that we can always add the solutions of the homogeneous (source-free) equations, that is, electromagnetic waves.

- A nasty fellow:
- Retarded time

$$
t_{r}=t-\frac{r_{12}}{c}
$$

Looking into space ．．．

Looking into space ...

... and time

Helmholtz decomposition

Any vector function \mathbf{F} (differentiable) who goes to zero faster than $\frac{1}{r}$ when $r \rightarrow \infty$ can be expressed as the sum of the gradient of a scalar and the curl of a vector

$$
\mathbf{F}(\mathbf{r})=-\nabla s(\mathbf{r})+\nabla \times \mathbf{v}(\mathbf{r})
$$

Helmholtz decomposition

Any vector function \mathbf{F} (differentiable) who goes to zero faster than $\frac{1}{r}$ when $r \rightarrow \infty$ can be expressed as the sum of the gradient of a scalar and the curl of a vector

$$
\mathbf{F}(\mathbf{r})=-\nabla s(\mathbf{r})+\nabla \times \mathbf{v}(\mathbf{r})
$$

Longitudinal component ("parallel"):

$$
\mathbf{F}_{\|}=-\nabla s(\mathbf{r}) ; \quad \boldsymbol{\nabla} \times \mathbf{F}_{\|}=\mathbf{0}
$$

Solenoidal component ("perpendicular"):

$$
\mathbf{F}_{\perp}=\boldsymbol{\nabla} \times \mathbf{v}(\mathbf{r}) ; \quad \boldsymbol{\nabla} \cdot \mathbf{F}_{\perp}=0
$$

Maxwell's equations: homogeneous pair

- $\boldsymbol{\nabla} \cdot \mathbf{B}=0$ means that magnetic fields are always solenoidal

$$
\mathbf{B}=\mathbf{B}_{\perp}=\boldsymbol{\nabla} \times \mathbf{A}(\mathbf{r}) \quad \text { and } \quad \mathbf{B}_{\|}=\mathbf{0}
$$

Maxwell's equations: homogeneous pair

- $\boldsymbol{\nabla} \cdot \mathbf{B}=0$ means that magnetic fields are always solenoidal

$$
\mathbf{B}=\mathbf{B}_{\perp}=\boldsymbol{\nabla} \times \mathbf{A}(\mathbf{r}) \quad \text { and } \quad \mathbf{B}_{\|}=\mathbf{0}
$$

- $\boldsymbol{\nabla} \times \mathbf{E}+\frac{\partial \mathbf{B}}{\partial t}=0$ then becomes $\boldsymbol{\nabla} \times\left(\mathbf{E}+\frac{\partial \mathbf{A}}{\partial t}\right)=0$ and one may write

$$
\mathbf{E}+\frac{\partial \mathbf{A}}{\partial t}=-\boldsymbol{\nabla} \phi(\mathbf{r}) \Rightarrow \mathbf{E}=-\boldsymbol{\nabla} \phi(\mathbf{r})-\frac{\partial \mathbf{A}}{\partial t}
$$

Maxwell's equations: homogeneous pair

- $\boldsymbol{\nabla} \cdot \mathbf{B}=0$ means that magnetic fields are always solenoidal

$$
\mathbf{B}=\mathbf{B}_{\perp}=\boldsymbol{\nabla} \times \mathbf{A}(\mathbf{r}) \quad \text { and } \quad \mathbf{B}_{\|}=\mathbf{0}
$$

- $\boldsymbol{\nabla} \times \mathbf{E}+\frac{\partial \mathbf{B}}{\partial t}=0$ then becomes $\boldsymbol{\nabla} \times\left(\mathbf{E}+\frac{\partial \mathbf{A}}{\partial t}\right)=0$ and one may write

$$
\mathbf{E}+\frac{\partial \mathbf{A}}{\partial t}=-\boldsymbol{\nabla} \phi(\mathbf{r}) \quad \Rightarrow \quad \mathbf{E}=-\boldsymbol{\nabla} \phi(\mathbf{r})-\frac{\partial \mathbf{A}}{\partial t}
$$

- The electric field generally has both a longitudinal and solenoidal component

$$
\mathbf{E}_{\|}=-\boldsymbol{\nabla} \phi-\frac{\partial \mathbf{A}_{\|}}{\partial t} ; \quad \mathbf{E}_{\perp}=-\frac{\partial \mathbf{A}_{\perp}}{\partial t}
$$

Maxwell's equations: homogeneous pair

- $\boldsymbol{\nabla} \cdot \mathbf{B}=0$ means that magnetic fields are always solenoidal

$$
\mathbf{B}=\mathbf{B}_{\perp}=\boldsymbol{\nabla} \times \mathbf{A}(\mathbf{r}) \quad \text { and } \quad \mathbf{B}_{\|}=\mathbf{0}
$$

- $\boldsymbol{\nabla} \times \mathbf{E}+\frac{\partial \mathbf{B}}{\partial t}=0$ then becomes $\boldsymbol{\nabla} \times\left(\mathbf{E}+\frac{\partial \mathbf{A}}{\partial t}\right)=0$ and one may write

$$
\mathbf{E}+\frac{\partial \mathbf{A}}{\partial t}=-\boldsymbol{\nabla} \phi(\mathbf{r}) \quad \Rightarrow \quad \mathbf{E}=-\boldsymbol{\nabla} \phi(\mathbf{r})-\frac{\partial \mathbf{A}}{\partial t}
$$

- The electric field generally has both a longitudinal and solenoidal component

$$
\mathbf{E}_{\|}=-\boldsymbol{\nabla} \phi-\frac{\partial \mathbf{A}_{\|}}{\partial t} ; \quad \mathbf{E}_{\perp}=-\frac{\partial \mathbf{A}_{\perp}}{\partial t}
$$

- With the introduction of the scalar potential ϕ and the vector potential A, the homogeneous pair of Maxwell's equations is automatically satisfied.

Maxwell's equations: homogeneous pair

- $\boldsymbol{\nabla} \cdot \mathbf{E}=4 \pi \rho$ becomes

$$
\begin{gathered}
\nabla^{2} \phi+\frac{\partial}{\partial t}(\boldsymbol{\nabla} \cdot \mathbf{A})=-4 \pi \rho \\
\text { or }\left[\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right] \phi+\frac{\partial}{\partial t}\left[(\boldsymbol{\nabla} \cdot \mathbf{A})+\frac{1}{c^{2}} \frac{\partial \phi}{\partial t}\right]=-4 \pi \rho
\end{gathered}
$$

Maxwell's equations: homogeneous pair

- $\boldsymbol{\nabla} \cdot \mathbf{E}=4 \pi \rho$ becomes

$$
\begin{gathered}
\nabla^{2} \phi+\frac{\partial}{\partial t}(\boldsymbol{\nabla} \cdot \mathbf{A})=-4 \pi \rho \\
\text { or }\left[\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right] \phi+\frac{\partial}{\partial t}\left[(\boldsymbol{\nabla} \cdot \mathbf{A})+\frac{1}{c^{2}} \frac{\partial \phi}{\partial t}\right]=-4 \pi \rho
\end{gathered}
$$

- $\boldsymbol{\nabla} \times \mathbf{B}-\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}=\frac{4 \pi}{c^{2}} \mathbf{j}$ becomes

$$
\left[\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right] \mathbf{A}-\boldsymbol{\nabla}\left[(\boldsymbol{\nabla} \cdot \mathbf{A})+\frac{1}{c^{2}} \frac{\partial \phi}{\partial t}\right]=-\frac{4 \pi}{c^{2}} \mathbf{j}
$$

Lorentz transformation and 4 -vectors

- The Lorentz transformation

$$
\overline{\mathbf{r}}_{\|}=\gamma\left(\mathbf{r}_{\|}-\mathbf{v} t\right) ; \quad \overline{\mathbf{r}}_{\perp}=\mathbf{r}_{\perp} ; \quad \bar{t}=\gamma\left(t-\frac{(\mathbf{r} \cdot \mathbf{v})}{c^{2}}\right)
$$

is the relativistic transformation between inertial frames.

Lorentz transformation and 4 -vectors

- The Lorentz transformation

$$
\overline{\mathbf{r}}_{\|}=\gamma\left(\mathbf{r}_{\|}-\mathbf{v} t\right) ; \quad \overline{\mathbf{r}}_{\perp}=\mathbf{r}_{\perp} ; \quad \bar{t}=\gamma\left(t-\frac{(\mathbf{r} \cdot \mathbf{v})}{c^{2}}\right)
$$

is the relativistic transformation between inertial frames.

- It involves space and time which can be combined into 4-position: $r_{\mu}=(\mathbf{r}, i c t)$ whose norm $\left(r_{\mu} r_{\mu}=r^{2}-c^{2} t^{2}\right)$ is conserved under Lorentz transformations

Lorentz transformation and 4 -vectors

- The Lorentz transformation

$$
\overline{\mathbf{r}}_{\|}=\gamma\left(\mathbf{r}_{\|}-\mathbf{v} t\right) ; \quad \overline{\mathbf{r}}_{\perp}=\mathbf{r}_{\perp} ; \quad \bar{t}=\gamma\left(t-\frac{(\mathbf{r} \cdot \mathbf{v})}{c^{2}}\right)
$$

is the relativistic transformation between inertial frames.

- It involves space and time which can be combined into 4-position: $r_{\mu}=(\mathbf{r}, i c t)$ whose norm $\left(r_{\mu} r_{\mu}=r^{2}-c^{2} t^{2}\right)$ is conserved under Lorentz transformations
- Other 4 -vectors are

Lorentz transformation and 4 -vectors

- The Lorentz transformation

$$
\overline{\mathbf{r}}_{\|}=\gamma\left(\mathbf{r}_{\|}-\mathbf{v} t\right) ; \quad \overline{\mathbf{r}}_{\perp}=\mathbf{r}_{\perp} ; \quad \bar{t}=\gamma\left(t-\frac{(\mathbf{r} \cdot \mathbf{v})}{c^{2}}\right)
$$

is the relativistic transformation between inertial frames.

- It involves space and time which can be combined into 4-position: $r_{\mu}=(\mathbf{r}, i c t)$ whose norm $\left(r_{\mu} r_{\mu}=r^{2}-c^{2} t^{2}\right)$ is conserved under Lorentz transformations
- Other 4-vectors are
- 4-velocity: $v_{\mu}=\gamma(\mathbf{v}, i c) ; \quad v_{\mu} v_{\mu}=-c^{2}$

Lorentz transformation and 4 -vectors

- The Lorentz transformation

$$
\overline{\mathbf{r}}_{\|}=\gamma\left(\mathbf{r}_{\|}-\mathbf{v} t\right) ; \quad \overline{\mathbf{r}}_{\perp}=\mathbf{r}_{\perp} ; \quad \bar{t}=\gamma\left(t-\frac{(\mathbf{r} \cdot \mathbf{v})}{c^{2}}\right)
$$

is the relativistic transformation between inertial frames.

- It involves space and time which can be combined into 4-position: $r_{\mu}=(\mathbf{r}, i c t)$ whose norm $\left(r_{\mu} r_{\mu}=r^{2}-c^{2} t^{2}\right)$ is conserved under Lorentz transformations
- Other 4-vectors are
- 4-velocity: $v_{\mu}=\gamma(\mathbf{v}, i c) ; \quad v_{\mu} v_{\mu}=-c^{2}$
- 4-momentum: $p_{\mu}=\gamma(m \mathbf{v}, i m c) ; \quad p_{\mu} p_{\mu}=-m^{2} c^{2}$

Lorentz transformation and 4 -vectors

- The Lorentz transformation

$$
\overline{\mathbf{r}}_{\|}=\gamma\left(\mathbf{r}_{\|}-\mathbf{v} t\right) ; \quad \overline{\mathbf{r}}_{\perp}=\mathbf{r}_{\perp} ; \quad \bar{t}=\gamma\left(t-\frac{(\mathbf{r} \cdot \mathbf{v})}{c^{2}}\right)
$$

is the relativistic transformation between inertial frames.

- It involves space and time which can be combined into 4-position: $r_{\mu}=(\mathbf{r}, i c t)$ whose norm $\left(r_{\mu} r_{\mu}=r^{2}-c^{2} t^{2}\right)$ is conserved under Lorentz transformations
- Other 4-vectors are
- 4-velocity: $v_{\mu}=\gamma(\mathbf{v}, i c) ; \quad v_{\mu} v_{\mu}=-c^{2}$
- 4-momentum: $p_{\mu}=\gamma(m \mathbf{v}, i m c) ; \quad p_{\mu} p_{\mu}=-m^{2} c^{2}$
- 4-gradient: $\partial_{\mu}=\left(\nabla,-(i / c) \frac{\partial}{\partial t}\right) ; \quad \partial_{\mu} \partial_{\mu}=\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}=\square^{2} ; \quad$ (d'Alembertian)

Lorentz transformation and 4 -vectors

- The Lorentz transformation

$$
\overline{\mathbf{r}}_{\|}=\gamma\left(\mathbf{r}_{\|}-\mathbf{v} t\right) ; \quad \overline{\mathbf{r}}_{\perp}=\mathbf{r}_{\perp} ; \quad \bar{t}=\gamma\left(t-\frac{(\mathbf{r} \cdot \mathbf{v})}{c^{2}}\right)
$$

is the relativistic transformation between inertial frames.

- It involves space and time which can be combined into 4-position: $r_{\mu}=(\mathbf{r}, i c t)$ whose norm $\left(r_{\mu} r_{\mu}=r^{2}-c^{2} t^{2}\right)$ is conserved under Lorentz transformations
- Other 4-vectors are
- 4-velocity: $v_{\mu}=\gamma(\mathbf{v}, i c) ; \quad v_{\mu} v_{\mu}=-c^{2}$
- 4-momentum: $p_{\mu}=\gamma(m \mathbf{v}, i m c) ; \quad p_{\mu} p_{\mu}=-m^{2} c^{2}$
- 4-gradient: $\quad \partial_{\mu}=\left(\nabla,-(i / c) \frac{\partial}{\partial t}\right) ; \quad \partial_{\mu} \partial_{\mu}=\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}=\square^{2} ; \quad$ (d'Alembertian)
- 4-potential: $A_{\mu}=(\mathbf{A},(i / c) \phi)$

Lorentz transformation and 4 -vectors

- The Lorentz transformation

$$
\overline{\mathbf{r}}_{\|}=\gamma\left(\mathbf{r}_{\|}-\mathbf{v} t\right) ; \quad \overline{\mathbf{r}}_{\perp}=\mathbf{r}_{\perp} ; \quad \bar{t}=\gamma\left(t-\frac{(\mathbf{r} \cdot \mathbf{v})}{c^{2}}\right)
$$

is the relativistic transformation between inertial frames.

- It involves space and time which can be combined into 4-position: $r_{\mu}=(\mathbf{r}, i c t)$ whose norm $\left(r_{\mu} r_{\mu}=r^{2}-c^{2} t^{2}\right)$ is conserved under Lorentz transformations
- Other 4-vectors are
- 4-velocity: $v_{\mu}=\gamma(\mathbf{v}, i c) ; \quad v_{\mu} v_{\mu}=-c^{2}$
- 4-momentum: $p_{\mu}=\gamma(m \mathbf{v}, i m c) ; \quad p_{\mu} p_{\mu}=-m^{2} c^{2}$
- 4-gradient: $\quad \partial_{\mu}=\left(\nabla,-(i / c) \frac{\partial}{\partial t}\right) ; \quad \partial_{\mu} \partial_{\mu}=\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}=\square^{2} ; \quad$ (d'Alembertian)
- 4-potential: $A_{\mu}=(\mathbf{A},(i / c) \phi)$
- 4-current:: $j_{\mu}=(\mathbf{j}, i c \rho)$

Lorentz transformation and 4 -vectors

- The Lorentz transformation

$$
\overline{\mathbf{r}}_{\|}=\gamma\left(\mathbf{r}_{\|}-\mathbf{v} t\right) ; \quad \overline{\mathbf{r}}_{\perp}=\mathbf{r}_{\perp} ; \quad \bar{t}=\gamma\left(t-\frac{(\mathbf{r} \cdot \mathbf{v})}{c^{2}}\right)
$$

is the relativistic transformation between inertial frames.

- It involves space and time which can be combined into 4-position: $r_{\mu}=(\mathbf{r}, i c t)$ whose norm $\left(r_{\mu} r_{\mu}=r^{2}-c^{2} t^{2}\right)$ is conserved under Lorentz transformations
- Other 4-vectors are
- 4-velocity: $v_{\mu}=\gamma(\mathbf{v}, i c) ; \quad v_{\mu} v_{\mu}=-c^{2}$
- 4-momentum: $p_{\mu}=\gamma(m \mathbf{v}, i m c) ; \quad p_{\mu} p_{\mu}=-m^{2} c^{2}$
- 4-gradient: $\quad \partial_{\mu}=\left(\nabla,-(i / c) \frac{\partial}{\partial t}\right) ; \quad \partial_{\mu} \partial_{\mu}=\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}=\square^{2} ; \quad$ (d'Alembertian)
- 4-potential: $A_{\mu}=(\mathbf{A},(i / c) \phi)$
- 4-current:: $j_{\mu}=(\mathbf{j}, i c \rho)$
- They all transform in the same way !

Maxwell's equations: 4-vector notation

- We start from:

$$
\begin{aligned}
& {\left[\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right] \phi+\frac{\partial}{\partial t}\left[(\boldsymbol{\nabla} \cdot \mathbf{A})+\frac{1}{c^{2}} \frac{\partial \phi}{\partial t}\right]=-4 \pi \rho} \\
& {\left[\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right] \mathbf{A}-\nabla\left[(\boldsymbol{\nabla} \cdot \mathbf{A})+\frac{1}{c^{2}} \frac{\partial \phi}{\partial t}\right]=-\frac{4 \pi}{c^{2}} \mathbf{j}}
\end{aligned}
$$

Maxwell's equations: 4-vector notation

- We start from:

$$
\begin{aligned}
& {\left[\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right] \phi+\frac{\partial}{\partial t}\left[(\boldsymbol{\nabla} \cdot \mathbf{A})+\frac{1}{c^{2}} \frac{\partial \phi}{\partial t}\right]=-4 \pi \rho} \\
& {\left[\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right] \mathbf{A}-\nabla\left[(\boldsymbol{\nabla} \cdot \mathbf{A})+\frac{1}{c^{2}} \frac{\partial \phi}{\partial t}\right]=-\frac{4 \pi}{c^{2}} \mathbf{j}}
\end{aligned}
$$

- This can be written more compactly as

$$
\begin{aligned}
& \square^{2} \phi+\frac{\partial}{\partial t}\left(\partial_{\mu} A_{\mu}\right)=-4 \pi \rho \\
& \square^{2} \mathbf{A}-\nabla\left(\partial_{\mu} A_{\mu}\right)=-\frac{4 \pi}{c^{2}} \mathbf{j}
\end{aligned}
$$

Maxwell's equations: 4-vector notation

- We start from:

$$
\begin{aligned}
& {\left[\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right] \phi+\frac{\partial}{\partial t}\left[(\boldsymbol{\nabla} \cdot \mathbf{A})+\frac{1}{c^{2}} \frac{\partial \phi}{\partial t}\right]=-4 \pi \rho} \\
& {\left[\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right] \mathbf{A}-\boldsymbol{\nabla}\left[(\boldsymbol{\nabla} \cdot \mathbf{A})+\frac{1}{c^{2}} \frac{\partial \phi}{\partial t}\right]=-\frac{4 \pi}{c^{2}} \mathbf{j}}
\end{aligned}
$$

- This can be written more compactly as

$$
\begin{aligned}
& \square^{2} \phi+\frac{\partial}{\partial t}\left(\partial_{\mu} A_{\mu}\right)=-4 \pi \rho \\
& \square^{2} \mathbf{A}-\boldsymbol{\nabla}\left(\partial_{\mu} \boldsymbol{A}_{\mu}\right)=-\frac{4 \pi}{c^{2}} \mathbf{j}
\end{aligned} ; \quad \square^{2}=\partial_{\mu} \partial_{\mu}=\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}
$$

- .. and finally squashed into

$$
\square^{2} A_{\beta}-\partial_{\beta}\left(\partial_{\alpha} A_{\alpha}\right)=-\frac{4 \pi}{c^{2}} j_{\beta}
$$

Gauge transformations

- $\mathbf{B}=\boldsymbol{\nabla} \times \mathbf{A}$ implies that the longitudinal component $\mathbf{A}_{\|}$of the vector potential can be modified without changing \mathbf{B}, that is

$$
\mathbf{A} \quad \rightarrow \quad \mathbf{A}^{\prime}=\mathbf{A}+\nabla \chi
$$

Gauge transformations

- $\mathbf{B}=\boldsymbol{\nabla} \times \mathbf{A}$ implies that the longitudinal component $\mathbf{A}_{\|}$of the vector potential can be modified without changing \mathbf{B}, that is

$$
\mathbf{A} \quad \rightarrow \quad \mathbf{A}^{\prime}=\mathbf{A}+\boldsymbol{\nabla} \chi
$$

- However

$$
\mathbf{E}=-\boldsymbol{\nabla} \phi-\frac{\partial \mathbf{A}}{\partial t}
$$

implies that a modification of \mathbf{A} requires a corresponding modification of the scalar potential

$$
\phi \quad \rightarrow \quad \phi^{\prime}=\phi-\frac{\partial \chi}{\partial t}
$$

Gauge transformations

- $\mathbf{B}=\boldsymbol{\nabla} \times \mathbf{A}$ implies that the longitudinal component $\mathbf{A}_{\|}$of the vector potential can be modified without changing \mathbf{B}, that is

$$
\mathbf{A} \quad \rightarrow \quad \mathbf{A}^{\prime}=\mathbf{A}+\nabla \chi
$$

- However

$$
\mathbf{E}=-\boldsymbol{\nabla} \phi-\frac{\partial \mathbf{A}}{\partial t}
$$

implies that a modification of \mathbf{A} requires a corresponding modification of the scalar potential

$$
\phi \quad \rightarrow \quad \phi^{\prime}=\phi-\frac{\partial \chi}{\partial t}
$$

- Lorentz covariant form :

$$
A_{\mu} \quad \rightarrow \quad A_{\mu}^{\prime}=A_{\mu}+\partial_{\mu} \chi
$$

Gauge transformations

- $\mathbf{B}=\boldsymbol{\nabla} \times \mathbf{A}$ implies that the longitudinal component $\mathbf{A}_{\|}$of the vector potential can be modified without changing \mathbf{B}, that is

$$
\mathbf{A} \quad \rightarrow \quad \mathbf{A}^{\prime}=\mathbf{A}+\nabla \chi
$$

- However

$$
\mathbf{E}=-\boldsymbol{\nabla} \phi-\frac{\partial \mathbf{A}}{\partial t}
$$

implies that a modification of \mathbf{A} requires a corresponding modification of the scalar potential

$$
\phi \quad \rightarrow \quad \phi^{\prime}=\phi-\frac{\partial \chi}{\partial t}
$$

- Lorentz covariant form :

$$
A_{\mu} \quad \rightarrow \quad A_{\mu}^{\prime}=A_{\mu}+\partial_{\mu} \chi
$$

- The electric and magnetic fields are gauge invariant.

Lorentz gauge: $\quad \partial_{\mu} A_{\mu}=\nabla \cdot \mathbf{A}+\frac{1}{c^{2}} \frac{\partial \phi}{\partial t}=0$

- Maxwell's equations simplifies to

$$
\square^{2} A_{\beta}=-\frac{4 \pi}{c^{2}} j_{\beta}
$$

Lorentz gauge: $\quad \partial_{\mu} A_{\mu}=\nabla \cdot \mathbf{A}+\frac{1}{c^{2}} \frac{\partial \phi}{\partial t}=0$

- Maxwell's equations simplifies to

$$
\square^{2} A_{\beta}=-\frac{4 \pi}{c^{2}} j_{\beta}
$$

- General solution:

$$
A\left(\mathbf{r}_{1}, t\right)=\int \frac{\mathbf{j}\left(\mathbf{r}_{2}, t_{r}\right)}{r_{12}} d^{3} \mathbf{r}_{2} ; \quad \phi\left(\mathbf{r}_{1}, t\right)=\int \frac{\rho\left(\mathbf{r}_{2}, t_{r}\right)}{r_{12}} d^{3} \mathbf{r}_{2}
$$

where appears retarded time

$$
t_{r}=t-\frac{r_{12}}{c}
$$

Coulomb gauge: $\quad \nabla \cdot \mathbf{A}=0$

- Maxwell's equations simplifies to:

$$
\begin{aligned}
\nabla^{2} \phi & =-4 \pi \rho \\
\left(\nabla^{2} \mathbf{A}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{A}}{\partial t^{2}}\right)-\nabla \frac{1}{c^{2}} \frac{\partial \phi}{\partial t} & =-\frac{4 \pi}{c^{2}} \mathbf{j}
\end{aligned}
$$

Coulomb gauge: $\quad \nabla \cdot \mathbf{A}=0$

- Maxwell's equations simplifies to:

$$
\begin{aligned}
\nabla^{2} \phi & =-4 \pi \rho \\
\left(\nabla^{2} \mathbf{A}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{A}}{\partial t^{2}}\right)-\nabla \frac{1}{c^{2}} \frac{\partial \phi}{\partial t} & =-\frac{4 \pi}{c^{2}} \mathbf{j}
\end{aligned}
$$

- The scalar potential is the solution of the Poisson equation

$$
\phi\left(\mathbf{r}_{1}, t\right)=\int \frac{\rho\left(\mathbf{r}_{2}, t\right)}{r_{12}} d^{3} \mathbf{r}_{2}
$$

and describes the instantaneous Coulomb interaction.

Coulomb gauge: $\quad \nabla \cdot \mathbf{A}=0$

- Maxwell's equations simplifies to:

$$
\begin{aligned}
\nabla^{2} \phi & =-4 \pi \rho \\
\left(\nabla^{2} \mathbf{A}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{A}}{\partial t^{2}}\right)-\nabla \frac{1}{c^{2}} \frac{\partial \phi}{\partial t} & =-\frac{4 \pi}{c^{2}} \mathbf{j}
\end{aligned}
$$

- The scalar potential is the solution of the Poisson equation

$$
\phi\left(\mathbf{r}_{1}, t\right)=\int \frac{\rho\left(\mathbf{r}_{2}, t\right)}{r_{12}} d^{3} \mathbf{r}_{2}
$$

and describes the instantaneous Coulomb interaction.

- Problem (?):

Coulomb gauge: $\quad \boldsymbol{\nabla} \cdot \mathbf{A}=0$

- Maxwell's equations simplifies to:

$$
\begin{aligned}
\nabla^{2} \phi & =-4 \pi \rho \\
\left(\nabla^{2} \mathbf{A}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{A}}{\partial t^{2}}\right)-\nabla \frac{1}{c^{2}} \frac{\partial \phi}{\partial t} & =-\frac{4 \pi}{c^{2}} \mathbf{j}
\end{aligned}
$$

- The scalar potential is the solution of the Poisson equation

$$
\phi\left(\mathbf{r}_{1}, t\right)=\int \frac{\rho\left(\mathbf{r}_{2}, t\right)}{r_{12}} d^{3} \mathbf{r}_{2}
$$

and describes the instantaneous Coulomb interaction.

- Problem (?):
- The theory of relativity does not allow instantaneous interactions.

Coulomb gauge: $\quad \nabla \cdot \mathbf{A}=0$

- Maxwell's equations simplifies to:

$$
\begin{aligned}
\nabla^{2} \phi & =-4 \pi \rho \\
\left(\nabla^{2} \mathbf{A}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{A}}{\partial t^{2}}\right)-\nabla \frac{1}{c^{2}} \frac{\partial \phi}{\partial t} & =-\frac{4 \pi}{c^{2}} \mathbf{j}
\end{aligned}
$$

- The scalar potential is the solution of the Poisson equation

$$
\phi\left(\mathbf{r}_{1}, t\right)=\int \frac{\rho\left(\mathbf{r}_{2}, t\right)}{r_{12}} d^{3} \mathbf{r}_{2}
$$

and describes the instantaneous Coulomb interaction.

- Problem (?):
- The theory of relativity does not allow instantaneous interactions.
- Retardation is hidden in the solution for the purely transversal vector potential

$$
\mathbf{A}\left(\mathbf{r}_{1}, t\right)=\mathbf{A}_{\perp}\left(\mathbf{r}_{1}, t\right)=\frac{4 \pi}{c^{2}} \int \frac{\mathbf{j}_{\perp}\left(\mathbf{r}_{2}, t_{r}\right)}{r_{12}} d^{3} \mathbf{r}_{2}
$$

Particles and fields

- Complete Hamiltonian

$$
H=H_{\text {particles }}+H_{\text {interaction }}+H_{\text {fields }}
$$

Particles and fields

- Complete Hamiltonian

$$
H=H_{\text {particles }}+H_{\text {interaction }}+H_{\text {fields }}
$$

- Fields specified:

Non-relativistic limit

$$
\begin{array}{ccc}
\left(i \gamma_{\mu} \partial_{\mu}-m c\right) \psi=0 & \rightarrow & \left(\frac{p^{2}}{2 m}-i \frac{\partial}{\partial t}\right) \psi=0 \\
\text { Dirac equation } & \text { Schrödinger equation }
\end{array}
$$

Particles and fields

- Complete Hamiltonian

$$
H=H_{\text {particles }}+H_{\text {interaction }}+H_{\text {fields }}
$$

- Fields specified:

> Non-relativistic limit

$$
\begin{array}{ccc}
\left(i \gamma_{\mu} \partial_{\mu}-m c\right) \psi=0 & \rightarrow & \left(\frac{p^{2}}{2 m}-i \frac{\partial}{\partial t}\right) \psi=0 \\
\text { Dirac equation } & \text { Schrödinger equation }
\end{array}
$$

- Particles (sources) specified:

Non-relativistic limit

$$
\square^{2} A_{\mu}-\partial_{\mu}\left(\partial_{\nu} A_{\nu}\right)=-\frac{4 \pi}{c^{2}} j_{\mu} \quad \rightarrow
$$

Maxwell's equations

The non-relativistic limit of electrodynamics

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot \mathbf{B} & =0 & & \boldsymbol{\nabla} \cdot \mathbf{B}
\end{aligned}=0
$$

The non-relativistic limit of electrodynamics

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot \mathbf{B} & =0 & & \boldsymbol{\nabla} \cdot \mathbf{B}
\end{aligned}=0
$$

- In the strict non-relativistic limit there are no magnetic fields and no effects of retardation!

The non-relativistic limit of electrodynamics

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot \mathbf{B} & =0 & & \boldsymbol{\nabla} \cdot \mathbf{B}
\end{aligned}=0
$$

- In the strict non-relativistic limit there are no magnetic fields and no effects of retardation!
- The Coulomb gauge bears its name because it singles out the instantaneous Coulomb interaction, which constitutes the proper non-relativistic limit of electrodynamics and which is the most important interaction in chemistry.

The non-relativistic limit of electrodynamics

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot \mathbf{B} & =0 & & \boldsymbol{\nabla} \cdot \mathbf{B}
\end{aligned}=0
$$

- In the strict non-relativistic limit there are no magnetic fields and no effects of retardation!
- The Coulomb gauge bears its name because it singles out the instantaneous Coulomb interaction, which constitutes the proper non-relativistic limit of electrodynamics and which is the most important interaction in chemistry.
- All retardation effects as well as magnetic interactions are to be considered corrections of a perturbation series of the total interaction (in $1 / c^{2}$).

The old Masters knew

P. A. M. Dirac, Proc. Roy. Soc. A 123 (1929) 714

Quantum Mechanics of Many-Electron Systems.

By P. A. M. Dirac, St. John's College, Cambridge.
(Communicated by R. H. Fowler, F.R.S.-Received March 12, 1929.)

§ 1. Introduction.

The general theory of quantum mechanics is now almost complete, the imperfections that still remain being in connection with the exact fitting in of the theory with relativity ideas. These give rise to difficulties only when high-speed particles are involved, and are therefore of no importance in the consideration of atomic and molecular structure and ordinary chemical reactions, in which it is, indeed, usually sufficiently accurate if one neglects relativity variation of mass with velocity and assumes only Coulomb forces between the various electrons and atomic nuclei. The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble. It therefore becomes desirable that approximate practical methods of applying quantum mechanics should be developed, which can lead to an explanation of the main features of complex atomic systems without too much computation.

The old Masters knew

P. A. M. Dirac, Proc. Roy. Soc. A 123 (1929) 714

Quantum Mechanics of Many-Electron Systems.

By P. A. M. Dirac, St. John's College, Cambridge.
(Communicated by R. H. Fowler, F.R.S.-Received March 12, 1929.)

§ 1. Introduction.

The general theory of quantum mechanics is now almost complete, the imperfections that still remain being in connection with the exact fitting in of the theory with relativity ideas. These give rise to difficulties only when high-speed particles are involved, and are therefore of no importance in the consideration of atomic and molecular structure and ordinary chemical reactions, in which it is, indeed, usually sufficiently accurate if one neglects relativity variation of mass with velocity and assumes only Coulomb forces between the various electrons and atomic nuclei. The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble. It therefore becomes desirable that approximate practical methods of applying quantum mechanics should be developed, which can lead to an explanation of the main features of complex atomic systems without too much computation.
W. Heisenberg: The Physical principles of the quantum theory (1930)

§8. THE WAVE CONCEPT FOR MATTER AND RADIATION: CLASSICAL THEORX

The classical wave theory is that of the de Broglie waves for matter and of electromagnetic waves for radiation. This section will treat primarily those waves which are associated with the electron (the proton waves can be treated in an entirely similar manner), though light waves will also be considered briefly. No attempt will be made to include relativistic effects, and it is then logical to treat only electrostatic forces and to neglect magnetic and retardational phenomena.

Scalar relativistic effects

in chemistry

Relativistic effects in chemistry

- The Lorentz factor

$$
\gamma=\frac{1}{\sqrt{1-v^{2} / c^{2}}} ; \quad \begin{cases}v & - \text { speed of particle } \\ c & - \text { speed of light }\end{cases}
$$

is a diagnostic of relativistic effects.

Relativistic effects in chemistry

- The Lorentz factor

$$
\gamma=\frac{1}{\sqrt{1-v^{2} / c^{2}}} ; \quad \begin{cases}v & - \text { speed of particle } \\ c & - \text { speed of light }\end{cases}
$$

is a diagnostic of relativistic effects.

- The speed of light is very large !

$$
c=299,792,458 \mathrm{~m} / \mathrm{s}=1079252848.8 \mathrm{~km} / \mathrm{h}
$$

Relativistic effects in chemistry

- The Lorentz factor

$$
\gamma=\frac{1}{\sqrt{1-v^{2} / c^{2}}} ; \quad \begin{cases}v & - \text { speed of particle } \\ c & - \text { speed of light }\end{cases}
$$

is a diagnostic of relativistic effects.

- The speed of light is very large !

$$
c=299,792,458 \mathrm{~m} / \mathrm{s}=1079252848.8 \mathrm{~km} / \mathrm{h}
$$

- So what goes fast in an atom or a molecule ?

Scalar-relativstic effects: hydrogen-like atoms

- In atomic units the average speed of the $1 s$ electron is equal to the nuclear charge

$$
v_{1 s}=Z \text { a.u. and } \quad c=137.0359998 \text { a.u. }
$$

Scalar-relativstic effects: hydrogen-like atoms

- In atomic units the average speed of the $1 s$ electron is equal to the nuclear charge

$$
v_{1 s}=Z \text { a.u. and } \quad c=137.0359998 \text { a.u. }
$$

- The relativistic mass increase of the $1 s$ electron is thus determined by the nuclear charge

$$
m=\gamma m_{e}=\frac{m_{e}}{\sqrt{1-Z^{2} / c^{2}}}
$$

Scalar-relativstic effects: hydrogen-like atoms

- In atomic units the average speed of the $1 s$ electron is equal to the nuclear charge

$$
v_{1 s}=Z \text { a.u. and } \quad c=137.0359998 \text { a.u. }
$$

- The relativistic mass increase of the $1 s$ electron is thus determined by the nuclear charge

$$
m=\gamma m_{e}=\frac{m_{e}}{\sqrt{1-Z^{2} / c^{2}}}
$$

- The Bohr radius is inversely proportional to electron mass

$$
a_{0}=\frac{4 \pi \varepsilon_{0} \hbar^{2}}{m}
$$

Scalar-relativstic effects: hydrogen-like atoms

- In atomic units the average speed of the $1 s$ electron is equal to the nuclear charge

$$
v_{1 s}=Z \text { a.u. and } \quad c=137.0359998 \text { a.u. }
$$

- The relativistic mass increase of the $1 s$ electron is thus determined by the nuclear charge

$$
m=\gamma m_{e}=\frac{m_{e}}{\sqrt{1-Z^{2} / c^{2}}}
$$

- The Bohr radius is inversely proportional to electron mass

$$
a_{0}=\frac{4 \pi \varepsilon_{0} \hbar^{2}}{m}
$$

- Relativity will contract orbitals of one-electron atoms, e.g.

Scalar-relativstic effects: hydrogen-like atoms

- In atomic units the average speed of the $1 s$ electron is equal to the nuclear charge

$$
v_{1 s}=Z \text { a.u. and } \quad c=137.0359998 \text { a.u. }
$$

- The relativistic mass increase of the $1 s$ electron is thus determined by the nuclear charge

$$
m=\gamma m_{e}=\frac{m_{e}}{\sqrt{1-Z^{2} / c^{2}}}
$$

- The Bohr radius is inversely proportional to electron mass

$$
a_{0}=\frac{4 \pi \varepsilon_{0} \hbar^{2}}{m}
$$

- Relativity will contract orbitals of one-electron atoms, e.g.
- $\mathrm{Au}^{78+}: Z / \mathrm{c}=58 \%$

Scalar-relativstic effects: hydrogen-like atoms

- In atomic units the average speed of the $1 s$ electron is equal to the nuclear charge

$$
v_{1 s}=Z \text { a.u. and } \quad c=137.0359998 \text { a.u. }
$$

- The relativistic mass increase of the $1 s$ electron is thus determined by the nuclear charge

$$
m=\gamma m_{e}=\frac{m_{e}}{\sqrt{1-Z^{2} / c^{2}}}
$$

- The Bohr radius is inversely proportional to electron mass

$$
a_{0}=\frac{4 \pi \varepsilon_{0} \hbar^{2}}{m}
$$

- Relativity will contract orbitals of one-electron atoms, e.g.
- $\mathrm{Au}^{78+}: Z / \mathrm{c}=58 \%$
- 18% relativistic contraction of the 1 s orbital

Scalar-relativistic effects: many-electron atoms

- The effect of the other electrons is effectively to screen the nuclear charge:

Neutral atom: Z electrons

We pull off an electron:

-e

Scalar-relativistic effects: many-electron atoms

- The effect of the other electrons is effectively to screen the nuclear charge:

Neutral atom: Z electrons

We pull off an electron:

- The relativistic contraction of orbitals will increase screening of nuclear charge and thus indirectly favor orbital expansion.

Scalar-relativistic effects: many-electron atoms

- The effect of the other electrons is effectively to screen the nuclear charge:

Neutral atom: Z electrons

We pull off an electron:

- The relativistic contraction of orbitals will increase screening of nuclear charge and thus indirectly favor orbital expansion.
- In practice we find:

Scalar-relativistic effects: many-electron atoms

- The effect of the other electrons is effectively to screen the nuclear charge:

Neutral atom: Z electrons

We pull off an electron:

- The relativistic contraction of orbitals will increase screening of nuclear charge and thus indirectly favor orbital expansion.
- In practice we find:
- s, p orbitals : contraction

Scalar-relativistic effects: many-electron atoms

- The effect of the other electrons is effectively to screen the nuclear charge:

Neutral atom: Z electrons

We pull off an electron:

- The relativistic contraction of orbitals will increase screening of nuclear charge and thus indirectly favor orbital expansion.
- In practice we find:
- s, p orbitals: contraction
- d, f orbitals : expansion

The colour of gold

The colours of silver and gold can be traced back to the energy difference between the $(n-1) d$ and $n s$ orbitals in the atom. For silver this transition is in the ultraviolet, giving the metallic luster. For gold it is in the visible, but only when relativistic effects are included.

Metal-water interaction

C. Gourlaouen, J.-P. Piquemal, T. Saue and O. Parisel, J. Comp. Chem. 27 (2006) 142
bonding dominated by charge-dipole interaction

Metal-water interaction

C. Gourlaouen, J.-P. Piquemal, T. Saue and O. Parisel, J. Comp. Chem. 27 (2006) 142

relativistic stabilisation of the $\mathrm{Au} 6 s$ orbital induces charge transfer and covalent bonding

Two contrasting neighbours: gold and mercury

L. J. Norrby, J. Chem. Ed. 68 (1991) 110

The low-temperature melting of mercury is a relativistic effect

Florent Calvo, Elke Pahl, Michael Wormit and Peter Schwerdtfeger, Ang. Chemie. Int. Ed. 52 (2013) 7583

Mercury melts at $234.32 \mathrm{~K}\left(-38.83^{\circ} \mathrm{C}\right)$

The low-temperature melting of mercury is a relativistic effect

Florent Calvo, Elke Pahl, Michael Wormit and Peter Schwerdtfeger, Ang. Chemie. Int. Ed. 52 (2013) 7583

Mercury melts at $234.32 \mathrm{~K}\left(-38.83^{\circ} \mathrm{C}\right)$

Cars start due to relativity

R. Ahuja, A. Blomquist, P. Pyykkö and P. Zaleski-Ejgjerd, Phys. Rev. Lett. 106 (2011) 018301

Cars start due to relativity

- Cathode reaction: $\mathrm{Pb}(\mathrm{s})+\mathrm{HSO}_{4}^{-}(\mathrm{aq}) \rightarrow \mathrm{PbSO}_{4}(\mathrm{~s})+\mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-}$
- Anode reaction: $\mathrm{PbO}_{2}(\mathrm{~s})+\mathrm{HSO}_{4}^{-}(\mathrm{aq})+3 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{PbSO}_{4}(\mathrm{~s})+$ $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
- Total reaction: $\mathrm{Pb}(\mathrm{s})+\mathrm{PbO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow 2 \mathrm{PbSO}_{4}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
- Cell potential: $E_{\text {cell }}^{0}=-\frac{\Delta G^{0}}{n F} \approx-\frac{\Delta H(0 K)}{n F}$

Cars start due to relativity

- Cathode reaction: $\mathrm{Pb}(\mathrm{s})+\mathrm{HSO}_{4}^{-}(\mathrm{aq}) \rightarrow \mathrm{PbSO}_{4}(\mathrm{~s})+\mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-}$
- Anode reaction: $\mathrm{PbO}_{2}(\mathrm{~s})+\mathrm{HSO}_{4}^{-}(\mathrm{aq})+3 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{PbSO}_{4}(\mathrm{~s})+$ $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
- Total reaction: $\mathrm{Pb}(\mathrm{s})+\mathrm{PbO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow 2 \mathrm{PbSO}_{4}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
- Cell potential: $E_{\text {cell }}^{0}=-\frac{\Delta G^{0}}{n F} \approx-\frac{\Delta H(0 K)}{n F}$

non-relativistic calculation:	+0.39 V
relativistic calculation:	+2.13 V
experiment:	+2.11 V

Spin-orbit interaction

Spin-orbit interaction

a much misunderstood interaction !

Spin-orbit interaction

a much misunderstood interaction!

- Often seen formula:

$$
h^{\text {so }}=\frac{1}{2 m^{2} c^{2}} \mathbf{s} \cdot[(\nabla V) \times \mathbf{p}] \quad \begin{gathered}
V=-\frac{Z}{r} \\
\rightarrow
\end{gathered} \frac{Z}{2 m^{2} c^{2} r^{3}} \mathbf{s} \cdot \mathbf{l}
$$

Spin-orbit interaction

a much misunderstood interaction !

- Often seen formula:

$$
h^{\text {so }}=\frac{1}{2 m^{2} c^{2}} \mathbf{s} \cdot[(\nabla V) \times \mathbf{p}] \quad \begin{gathered}
V=-\frac{Z}{r} \\
\rightarrow
\end{gathered} \frac{Z}{2 m^{2} c^{2} r^{3}} \mathbf{s} \cdot \mathbf{l}
$$

- The spin-orbit interaction is not the interaction between spin and angular momentum of an electron.

Spin-orbit interaction

a much misunderstood interaction !

- Often seen formula:

$$
h^{\text {so }}=\frac{1}{2 m^{2} c^{2}} \mathbf{s} \cdot[(\nabla V) \times \mathbf{p}] \quad \begin{gathered}
V=-\frac{Z}{r} \\
\rightarrow
\end{gathered} \frac{Z}{2 m^{2} c^{2} r^{3}} \mathbf{s} \cdot \mathbf{l}
$$

- The spin-orbit interaction is not the interaction between spin and angular momentum of an electron.
- An electron moving alone in space is subject to no spin-orbit interaction !

Spin-orbit interaction

a much misunderstood interaction !

- Often seen formula:

$$
h^{\text {so }}=\frac{1}{2 m^{2} c^{2}} \mathbf{s} \cdot[(\nabla V) \times \mathbf{p}] \quad \begin{gathered}
V=-\frac{Z}{r} \\
\rightarrow
\end{gathered} \frac{Z}{2 m^{2} c^{2} r^{3}} \mathbf{s} \cdot \mathbf{l}
$$

- The spin-orbit interaction is not the interaction between spin and angular momentum of an electron.
- An electron moving alone in space is subject to no spin-orbit interaction !
- The basic mechanism of the spin-orbit interaction is magnetic induction:

Spin-orbit interaction

a much misunderstood interaction !

- Often seen formula:

$$
h^{\text {so }}=\frac{1}{2 m^{2} c^{2}} \mathbf{s} \cdot[(\nabla V) \times \mathbf{p}] \quad \begin{gathered}
V=-\frac{Z}{r} \\
\rightarrow
\end{gathered} \frac{Z}{2 m^{2} c^{2} r^{3}} \mathbf{s} \cdot \mathbf{l}
$$

- The spin-orbit interaction is not the interaction between spin and angular momentum of an electron.
- An electron moving alone in space is subject to no spin-orbit interaction !
- The basic mechanism of the spin-orbit interaction is magnetic induction:
- An electron which moves in a molecular field will feel a magnetic field in its rest frame, in addition to an electric field.

Spin-orbit interaction

a much misunderstood interaction !

- Often seen formula:

$$
h^{\text {so }}=\frac{1}{2 m^{2} c^{2}} \mathbf{s} \cdot[(\nabla V) \times \mathbf{p}] \quad \begin{gathered}
V=-\frac{Z}{r} \\
\rightarrow
\end{gathered} \frac{Z}{2 m^{2} c^{2} r^{3}} \mathbf{s} \cdot \mathbf{I}
$$

- The spin-orbit interaction is not the interaction between spin and angular momentum of an electron.
- An electron moving alone in space is subject to no spin-orbit interaction !
- The basic mechanism of the spin-orbit interaction is magnetic induction:
- An electron which moves in a molecular field will feel a magnetic field in its rest frame, in addition to an electric field.
- The spin-orbit term describes the interaction of the spin of the electron with this magnetic field due to the relative motion of other charges.

Spin-orbit interaction

a much misunderstood interaction !

- Often seen formula:

$$
h^{\text {so }}=\frac{1}{2 m^{2} c^{2}} \mathbf{s} \cdot[(\nabla V) \times \mathbf{p}] \quad \begin{gathered}
V=-\frac{Z}{r} \\
\rightarrow
\end{gathered} \frac{Z}{2 m^{2} c^{2} r^{3}} \mathbf{s} \cdot \mathbf{l}
$$

- The spin-orbit interaction is not the interaction between spin and angular momentum of an electron.
- An electron moving alone in space is subject to no spin-orbit interaction !
- The basic mechanism of the spin-orbit interaction is magnetic induction:
- An electron which moves in a molecular field will feel a magnetic field in its rest frame, in addition to an electric field.
- The spin-orbit term describes the interaction of the spin of the electron with this magnetic field due to the relative motion of other charges.
- This operator couples the degrees of freedom associated with spin and space and therefore makes it impossible to treat spin and spatial symmetry separately.

Spin-orbit interaction couples spin and space.

Example: I_{2}^{+}(open-shell)

C. van Wüllen, J. Comput. Chem. 23 (2002) 779

$$
\text { Energy: } \equiv 0 E_{h}
$$

Spin-orbit interaction couples spin and space.

Example: I_{2}^{+}(open-shell)

C. van Wüllen, J. Comput. Chem. 23 (2002) 779

Spin-orbit interaction couples spin and space.

Example: I_{2}^{+}(open-shell)

C. van Wüllen, J. Comput. Chem. 23 (2002) 779

Energy: $\equiv 0 E_{h}$
Energy: $=+0.001469972 E_{h}$

- These are DFT calculations using collinear magnetization: $s=m_{z}=\rho^{\alpha}-\rho^{\beta}$

Spin-orbit interaction couples spin and space.

Example: I_{2}^{+}(open-shell)

C. van Wüllen, J. Comput. Chem. 23 (2002) 779

- These are DFT calculations using collinear magnetization: $s=m_{z}=\rho^{\alpha}-\rho^{\beta}$
- Spin magnetization: $\mathbf{m}=\sum_{i} \psi_{i}^{\dagger} \boldsymbol{\sigma} \psi_{i}$

Spin-orbit interaction couples spin and space.

Example: I_{2}^{+}(open-shell)

C. van Wüllen, J. Comput. Chem. 23 (2002) 779

- These are DFT calculations using collinear magnetization: $s=m_{z}=\rho^{\alpha}-\rho^{\beta}$
- Spin magnetization: $\mathbf{m}=\sum_{i} \psi_{i}^{\dagger} \boldsymbol{\sigma} \psi_{i}$
- A solution is to use non-collinear magnetization: $s=|\mathbf{m}|$

Spin-orbit interaction in atoms

- Without spin-orbit interaction the orbital angular momentum and spin of orbitals are decoupled and can be specified separately

$$
\left(l, m_{l}\right) \cup\left(s, m_{s}\right)
$$

Spin-orbit interaction in atoms

- Without spin-orbit interaction the orbital angular momentum and spin of orbitals are decoupled and can be specified separately

$$
\left(I, m_{l}\right) \cup\left(s, m_{s}\right)
$$

- With spin-orbit interaction only the total angular momentum is conserved

$$
\mathbf{j}=\mathbf{I}+\mathbf{s} ; \quad j=|I-s|, \ldots, I+s
$$

Spin-orbit interaction in atoms

- Without spin-orbit interaction the orbital angular momentum and spin of orbitals are decoupled and can be specified separately

$$
\left(I, m_{l}\right) \cup\left(s, m_{s}\right)
$$

- With spin-orbit interaction only the total angular momentum is conserved

$$
\mathbf{j}=\mathbf{I}+\mathbf{s} ; \quad j=|I-s|, \ldots, I+s
$$

- Orbitals are accordingly characterized by quantum numbers j and m_{j}

$$
\hat{j}^{2}\left|j, m_{j}\right\rangle=\hbar^{2} j(j+1)\left|j, m_{j}\right\rangle ; \quad \hat{j}_{z}\left|j, m_{j}\right\rangle=\hbar m_{j}\left|j, m_{j}\right\rangle
$$

Example: the oxygen atom

- Without spin-orbit coupling atomic electronic states are specified as ${ }^{2 S+1} L$, with the notation S, P, D, \ldots for $L=0,1,2, \ldots$.

Example: the oxygen atom

- Without spin-orbit coupling atomic electronic states are specified as ${ }^{2 S+1} L$, with the notation S, P, D, \ldots for $L=0,1,2, \ldots$
- The ground state configuration of oxygen is $1 s^{2} 2 s^{2} 2 p^{4}$ which in a non-relativistic framework (LS-coupling) gives rise to three states:

Term	L	S	Possible J values
${ }^{3} P$	1	1	$2,1,0$
${ }^{1} D$	2	0	2
${ }^{1} S$	0	0	0

Example: the oxygen atom

- Without spin-orbit coupling atomic electronic states are specified as ${ }^{2 S+1} L$, with the notation S, P, D, \ldots for $L=0,1,2, \ldots$.
- The ground state configuration of oxygen is $1 s^{2} 2 s^{2} 2 p^{4}$ which in a non-relativistic framework (LS-coupling) gives rise to three states:

Term	L	S	Possible J values
${ }^{3} P$	1	1	$2,1,0$
${ }^{1} D$	2	0	2
${ }^{1} S$	0	0	0

- The actual energy levels are

Term	J	Level $\left(\mathrm{cm}^{-1}\right)$
${ }^{3} P$	2	0.000
	1	158.265
	0	226.977
${ }^{1} D$	2	15867.862
${ }^{1} S$	0	33792.583

http://physics.nist.gov/PhysRefData/Handbook/Tables/oxygentable1.htm

Spin-orbit splitting in group 8

Term	J	Oxygen	Sulfur	Selenium	Tellurium	Polonium
${ }^{3} P$	2	0.000	0.000	0.000	0.00	0.00
	1	158.265	396.055	1989.497	4706.500	7514.69
	0	226.977	573.640	2534.360	4750.712	16831.61
${ }^{1} D$	2	15867.862	9238.609	9576.149	10557.877	21679.11
${ }^{1} S$	0	33792.583	22179.954	22446.202	23198.392	

Spin-orbit splitting in group 8

Term	J	Oxygen	Sulfur	Selenium	Tellurium	Polonium
${ }^{3} P$	2	0.000	0.000	0.000	0.00	0.00
	1	158.265	396.055	1989.497	4706.500	7514.69
	0	226.977	573.640	2534.360	4750.712	16831.61
${ }^{1} D$	2	15867.862	9238.609	9576.149	10557.877	21679.11
${ }^{1} S$	0	33792.583	22179.954	22446.202	23198.392	

- For light atoms the fine structure approximately satisfies Landé's interval rule

$$
\Delta E\left(J, J^{\prime}\right)=E_{S O}(L S J)-E_{S O}\left(L S J^{\prime}\right)=\frac{1}{2} \zeta\left({ }^{2 S+1} L\right)\left[J(J+1)-J^{\prime}\left(J^{\prime}+1\right)\right]
$$

Spin-orbit splitting in group 8

Term	J	Oxygen	Sulfur	Selenium	Tellurium	Polonium
${ }^{3} P$	2	0.000	0.000	0.000	0.00	0.00
	1	158.265	396.055	1989.497	4706.500	7514.69
	0	226.977	573.640	2534.360	4750.712	16831.61
${ }^{1} D$	2	15867.862	9238.609	9576.149	10557.877	21679.11
${ }^{1} S$	0	33792.583	22179.954	22446.202	23198.392	

- For light atoms the fine structure approximately satisfies Landé's interval rule

$$
\Delta E\left(J, J^{\prime}\right)=E_{S O}(L S J)-E_{S O}\left(L S J^{\prime}\right)=\frac{1}{2} \zeta\left({ }^{2 S+1} L\right)\left[J(J+1)-J^{\prime}\left(J^{\prime}+1\right)\right]
$$

- ...which for neighbour levels reads

$$
\Delta E(J, J-1)=\zeta\left({ }^{2 S+1} L\right) \cdot J
$$

Spin-orbit splitting in group 8

Term	J	Oxygen	Sulfur	Selenium	Tellurium	Polonium
${ }^{3} P$	2	0.000	0.000	0.000	0.00	0.00
	1	158.265	396.055	1989.497	4706.500	7514.69
	0	226.977	573.640	2534.360	4750.712	16831.61
${ }^{1} D$	2	15867.862	9238.609	9576.149	10557.877	21679.11
${ }^{1} S$	0	33792.583	22179.954	22446.202	23198.392	

- For light atoms the fine structure approximately satisfies Landé's interval rule

$$
\Delta E\left(J, J^{\prime}\right)=E_{S O}(L S J)-E_{S O}\left(L S J^{\prime}\right)=\frac{1}{2} \zeta\left({ }^{2 S+1} L\right)\left[J(J+1)-J^{\prime}\left(J^{\prime}+1\right)\right]
$$

- ...which for neighbour levels reads

$$
\Delta E(J, J-1)=\zeta\left({ }^{2 S+1} L\right) \cdot J
$$

- For heavier atoms the interval rule breaks down because of coupling between different LS terms as well as change in the spatial extent of radial parts between spin-orbit components.

Atomic oxygen emissions in northern lights

Atomic Oxygen Emission Spectrum

NCAR/HAO

	Transition	Wavelength (\AA)	Type	Lifetime(s)
Green line	${ }^{1} S_{0} \rightarrow{ }^{1} D_{2}$	5577	E2	0.75
Red line	${ }^{1} D_{2} \rightarrow{ }^{3} P_{2}$	6300	M 1	110

Molecular oxygen: the spinfree picture

- In the absence of spin-orbit interaction, molecular states are denoted ${ }^{2 S+1} \Lambda$, with $\Lambda=\left|M_{L}\right|$.

Molecular oxygen: the spinfree picture

- In the absence of spin-orbit interaction, molecular states are denoted ${ }^{2 S+1} \Lambda$, with $\Lambda=\left|M_{L}\right|$.

- Ground-state electron configuration: [core] $2 \sigma_{g}^{2} 1 \pi_{u}^{4} 2 \pi_{g}^{2} \quad \Rightarrow \quad\binom{4}{2}=6$ micro-states

Molecular oxygen: the spinfree picture

- In the absence of spin-orbit interaction, molecular states are denoted ${ }^{2 S+1} \Lambda$, with $\Lambda=\left|M_{L}\right|$.

- Ground-state electron configuration: [core] $2 \sigma_{g}^{2} 1 \pi_{u}^{4} 2 \pi_{g}^{2} \quad \Rightarrow \quad\binom{4}{2}=6$ micro-states
- Electronic states: ${ }^{3} \Sigma,{ }^{1} \Sigma,{ }^{1} \Delta$

Molecular oxygen: the spinfree picture

- In the absence of spin-orbit interaction, molecular states are denoted ${ }^{2 S+1} \Lambda$, with $\Lambda=\left|M_{L}\right|$.

- Ground-state electron configuration: [core] $2 \sigma_{g}^{2} 1 \pi_{u}^{4} 2 \pi_{g}^{2} \quad \Rightarrow \quad\binom{4}{2}=6$ micro-states
- Electronic states: ${ }^{3} \Sigma,{ }^{1} \Sigma,{ }^{1} \Delta$
- All states are gerade: $g \times g=g$.

Molecular oxygen: the spinfree picture

- In the absence of spin-orbit interaction, molecular states are denoted ${ }^{2 S+1} \Lambda$, with $\Lambda=\left|M_{L}\right|$.

- Ground-state electron configuration: [core] $2 \sigma_{g}^{2} 1 \pi_{u}^{4} 2 \pi_{g}^{2} \quad \Rightarrow \quad\binom{4}{2}=6$ micro-states
- Electronic states: ${ }^{3} \Sigma,{ }^{1} \Sigma,{ }^{1} \Delta$
- All states are gerade: $g \times g=g$.
- \sum-states are further characterized by reflection in planes containing the molecular axis:
- $\pi_{+} \leftrightarrow \pi_{-}$

Molecular oxygen: the spinfree picture

- In the absence of spin-orbit interaction, molecular states are denoted ${ }^{2 S+1} \Lambda$, with $\Lambda=\left|M_{L}\right|$.

- Ground-state electron configuration: [core] $2 \sigma_{g}^{2} 1 \pi_{u}^{4} 2 \pi_{g}^{2} \quad \Rightarrow \quad\binom{4}{2}=6$ micro-states
- Electronic states: ${ }^{3} \Sigma,{ }^{1} \Sigma,{ }^{1} \Delta$
- All states are gerade: $g \times g=g$.
- \sum-states are further characterized by reflection in planes containing the molecular axis:
- $\pi_{+} \leftrightarrow \pi_{-}$
- We make the following table:

$$
\begin{array}{lllll}
{ }^{1} \Sigma_{g}: & \frac{1}{\sqrt{2}}(\alpha \beta-\beta \alpha) & \times & \frac{1}{\sqrt{2}}\left(\pi_{+} \pi_{-}+\pi_{-} \pi_{+}\right) & \rightarrow \\
{ }^{1} \Sigma_{g}^{+} \\
{ }^{3} \Sigma_{g}: & \frac{1}{\sqrt{2}}(\alpha \beta+\beta \alpha) & \times & \frac{1}{\sqrt{2}}\left(\pi_{+} \pi_{-}-\pi_{-} \pi_{+}\right) & \rightarrow \\
{ }^{3} \Sigma_{g}^{-}
\end{array}
$$

Molecular oxygen: adding spin-orbit interaction

- In the absence of spin-orbit interaction, molecular states are denoted ${ }^{2 S+1} \Lambda$, with $\Lambda=\left|M_{L}\right|$

Term	$T_{e}\left(\mathrm{~cm}^{-1}\right)$
$\mathrm{X}^{3} \Sigma_{g}^{-}$	0.0
$\mathrm{a}^{1} \Delta_{g}$	7918.1
$\mathrm{~b}^{1} \Sigma_{g}^{+}$	13195.1

Molecular oxygen: adding spin-orbit interaction

- In the absence of spin-orbit interaction, molecular states are denoted ${ }^{2 S+1} \Lambda$, with $\Lambda=\left|M_{L}\right|$

Term	$T_{e}\left(\mathrm{~cm}^{-1}\right)$
$\mathrm{X}^{3} \Sigma_{g}^{-}$	0.0
$\mathrm{a}^{1} \Delta_{g}$	7918.1
$\mathrm{~b}^{1} \Sigma_{g}^{+}$	13195.1
http://webbook. nist.gov/chemistry/	

- In the presence of spin-orbit interaction, molecular states are characterized by $\Omega=\left|M_{L}+M_{S}\right|$.

Molecular oxygen: adding spin-orbit interaction

- In the absence of spin-orbit interaction, molecular states are denoted ${ }^{2 S+1} \Lambda$, with $\Lambda=\left|M_{L}\right|$

Term	$T_{e}\left(\mathrm{~cm}^{-1}\right)$
$\mathrm{X}^{3} \Sigma_{g}^{-}$	0.0
$\mathrm{a}^{1} \Delta_{g}$	7918.1
$\mathrm{~b}^{1} \Sigma_{g}^{+}$	13195.1
http://webbook. nist.gov/chemistry/	

- In the presence of spin-orbit interaction, molecular states are characterized by $\Omega=\left|M_{L}+M_{S}\right|$.
- Reflection symmetry: We now have to consider spin and spatial symmetry combined

Molecular oxygen: adding spin-orbit interaction

- In the absence of spin-orbit interaction, molecular states are denoted ${ }^{2 S+1} \Lambda$, with $\Lambda=\left|M_{L}\right|$

Term	$T_{e}\left(\mathrm{~cm}^{-1}\right)$
$\mathrm{X}^{3} \Sigma_{g}^{-}$	0.0
$\mathrm{a}^{1} \Delta_{g}$	7918.1
$\mathrm{~b}^{1} \Sigma_{g}^{+}$	13195.1
http://webbook.nist.gov/chemistry/	

- In the presence of spin-orbit interaction, molecular states are characterized by $\Omega=\left|M_{L}+M_{S}\right|$.
- Reflection symmetry: We now have to consider spin and spatial symmetry combined
- Singlets are totally symmetric; triplets transform as rotations.

Molecular oxygen: adding spin-orbit interaction

- In the absence of spin-orbit interaction, molecular states are denoted ${ }^{2 S+1} \Lambda$, with $\Lambda=\left|M_{L}\right|$

Term	$T_{e}\left(\mathrm{~cm}^{-1}\right)$
$\mathrm{X}^{3} \Sigma_{g}^{-}$	0.0
$\mathrm{a}^{1} \Delta_{g}$	7918.1
$\mathrm{~b}^{1} \Sigma_{g}^{+}$	13195.1
http://webbook.nist.gov/chemistry/	

- In the presence of spin-orbit interaction, molecular states are characterized by $\Omega=\left|M_{L}+M_{S}\right|$.
- Reflection symmetry: We now have to consider spin and spatial symmetry combined
- Singlets are totally symmetric; triplets transform as rotations.
- We obtain:

$$
\begin{array}{llll}
{ }^{3} \Sigma_{g}^{-}: & \frac{1}{2}\left(\pi_{+} \pi_{-}-\pi_{-} \pi_{+}\right)(\alpha \beta+\beta \alpha) & \rightarrow & 0_{g}^{+} \\
{ }^{1} \Sigma_{g}^{+}: & \frac{1}{2}\left(\pi_{+} \pi_{-}+\pi_{-} \pi_{+}\right)(\alpha \beta-\beta \alpha) & \rightarrow & 0_{g}^{+}
\end{array}
$$

Molecular oxygen: adding spin-orbit interaction

- In the absence of spin-orbit interaction, molecular states are denoted ${ }^{2 S+1} \Lambda$, with $\Lambda=\left|M_{L}\right|$

Term	$T_{e}\left(\mathrm{~cm}^{-1}\right)$
$\mathrm{X}^{3} \Sigma_{g}^{-}$	0.0
$\mathrm{a}^{1} \Delta_{g}$	7918.1
$\mathrm{~b}^{1} \Sigma_{g}^{+}$	13195.1
http://webbook.nist.gov/chemistry/	

- In the presence of spin-orbit interaction, molecular states are characterized by $\Omega=\left|M_{L}+M_{S}\right|$.
- Reflection symmetry: We now have to consider spin and spatial symmetry combined
- Singlets are totally symmetric; triplets transform as rotations.
- We obtain:

$$
\begin{array}{llll}
{ }^{3} \Sigma_{g}^{-}: & \frac{1}{2}\left(\pi_{+} \pi_{-}-\pi_{-} \pi_{+}\right)(\alpha \beta+\beta \alpha) & \rightarrow & 0_{g}^{+} \\
{ }^{1} \Sigma_{g}^{+}: & \frac{1}{2}\left(\pi_{+} \pi_{-}+\pi_{-} \pi_{+}\right)(\alpha \beta-\beta \alpha) & \rightarrow & 0_{g}^{+}
\end{array}
$$

- The ground state of the oxygen molecule is a triplet.

Molecular oxygen: adding spin-orbit interaction

- In the absence of spin-orbit interaction, molecular states are denoted ${ }^{2 S+1} \Lambda$, with $\Lambda=\left|M_{L}\right|$

Term	$T_{e}\left(\mathrm{~cm}^{-1}\right)$
$\mathrm{X}^{3} \Sigma_{g}^{-}$	0.0
$\mathrm{a}^{1} \Delta_{g}$	7918.1
$\mathrm{~b}^{1} \Sigma_{g}^{+}$	13195.1
http://webbook.nist.gov/chemistry/	

- In the presence of spin-orbit interaction, molecular states are characterized by $\Omega=\left|M_{L}+M_{S}\right|$.
- Reflection symmetry: We now have to consider spin and spatial symmetry combined
- Singlets are totally symmetric; triplets transform as rotations.
- We obtain:

$$
\begin{array}{llll}
{ }^{3} \Sigma_{g}^{-}: & \frac{1}{2}\left(\pi_{+} \pi_{-}-\pi_{-} \pi_{+}\right)(\alpha \beta+\beta \alpha) & \rightarrow & 0_{g}^{+} \\
{ }^{1} \Sigma_{g}^{+}: & \frac{1}{2}\left(\pi_{+} \pi_{-}+\pi_{-} \pi_{+}\right)(\alpha \beta-\beta \alpha) & \rightarrow & 0_{g}^{+}
\end{array}
$$

- The ground state of the oxygen molecule is a triplet.
- It is split by spin-orbit interaction into 0_{g}^{+}and 1_{g} (zero-field splitting).

Molecular oxygen: adding spin-orbit interaction

- In the absence of spin-orbit interaction, molecular states are denoted ${ }^{2 S+1} \Lambda$, with $\Lambda=\left|M_{L}\right|$

Term	$T_{e}\left(\mathrm{~cm}^{-1}\right)$
$\mathrm{X}^{3} \Sigma_{g}^{-}$	0.0
$\mathrm{a}^{1} \Delta_{g}$	7918.1
$\mathrm{~b}^{1} \Sigma_{g}^{+}$	13195.1
http://webbook.nist.gov/chemistry/	

- In the presence of spin-orbit interaction, molecular states are characterized by $\Omega=\left|M_{L}+M_{S}\right|$.
- Reflection symmetry: We now have to consider spin and spatial symmetry combined
- Singlets are totally symmetric; triplets transform as rotations.
- We obtain:

$$
\begin{array}{llll}
{ }^{3} \Sigma_{g}^{-}: & \frac{1}{2}\left(\pi_{+} \pi_{-}-\pi_{-} \pi_{+}\right)(\alpha \beta+\beta \alpha) & \rightarrow & 0_{g}^{+} \\
{ }^{1} \Sigma_{g}^{+}: & \frac{1}{2}\left(\pi_{+} \pi_{-}+\pi_{-} \pi_{+}\right)(\alpha \beta-\beta \alpha) & \rightarrow & 0_{g}^{+}
\end{array}
$$

- The ground state of the oxygen molecule is a triplet.
- It is split by spin-orbit interaction into 0_{g}^{+}and 1_{g} (zero-field splitting).
- A magnetic interaction such as spin-orbit interaction is required for interaction with singlet states.

Molecular oxygen: adding spin-orbit interaction

- In the absence of spin-orbit interaction, molecular states are denoted ${ }^{2 S+1} \Lambda$, with $\Lambda=\left|M_{L}\right|$

Term	$T_{e}\left(\mathrm{~cm}^{-1}\right)$
$\mathrm{X}^{3} \Sigma_{g}^{-}$	0.0
$\mathrm{a}^{1} \Delta_{g}$	7918.1
$\mathrm{~b}^{1} \Sigma_{g}^{+}$	13195.1
http://webbook.nist.gov/chemistry/	

- In the presence of spin-orbit interaction, molecular states are characterized by $\Omega=\left|M_{L}+M_{S}\right|$.
- Reflection symmetry: We now have to consider spin and spatial symmetry combined
- Singlets are totally symmetric; triplets transform as rotations.
- We obtain:

$$
\begin{array}{llll}
{ }^{3} \Sigma_{g}^{-}: & \frac{1}{2}\left(\pi_{+} \pi_{-}-\pi_{-} \pi_{+}\right)(\alpha \beta+\beta \alpha) & \rightarrow & 0_{g}^{+} \\
{ }^{1} \Sigma_{g}^{+}: & \frac{1}{2}\left(\pi_{+} \pi_{-}+\pi_{-} \pi_{+}\right)(\alpha \beta-\beta \alpha) & \rightarrow & 0_{g}^{+}
\end{array}
$$

- The ground state of the oxygen molecule is a triplet.
- It is split by spin-orbit interaction into 0_{g}^{+}and 1_{g} (zero-field splitting).
- A magnetic interaction such as spin-orbit interaction is required for interaction with singlet states.
- This is crucial for life !

Chalcogen dimers: zero-field splitting

- Oxygen dimer:

Term	$T_{e}\left(\mathrm{~cm}^{-1}\right)$
$\mathrm{X}^{3} \Sigma_{g}^{-}$	0.0
$\mathrm{a}^{1} \Delta_{g}$	7918.1
$\mathrm{~b}^{1} \Sigma_{g}^{+}$	13195.1
http://webbook.nist.gov/chemistry/	

Chalcogen dimers: zero-field splitting

- Oxygen dimer:

Term	$T_{e}\left(\mathrm{~cm}^{-1}\right)$
$\mathrm{X}^{3} \Sigma_{g}^{-}$	0.0
$\mathrm{a}^{1} \Delta_{g}$	7918.1
$\mathrm{~b}^{1} \Sigma_{g}^{+}$	13195.1

- Zero-field splitting:

Chalcogen dimers: zero-field splitting

- Oxygen dimer:

Term	$T_{e}\left(\mathrm{~cm}^{-1}\right)$
$\mathrm{X}^{3} \Sigma_{g}^{-}$	0.0
$\mathrm{a}^{1} \Delta_{g}$	7918.1
$\mathrm{~b}^{1} \Sigma_{g}^{+}$	13195.1
http://webbook.nist.gov/chemistry/	

- Zero-field splitting:
- O_{2} : $0.156 \mathrm{~cm}^{-1}$

Chalcogen dimers: zero-field splitting

- Oxygen dimer:

| Term $T_{e}\left(\mathrm{~cm}^{-1}\right)$
 $\mathrm{X}^{3} \Sigma_{g}^{-}$ 0.0
 $\mathrm{a}^{1} \Delta_{g}$ 7918.1
 $\mathrm{~b}^{1} \Sigma_{g}^{+}$ 13195.1
 http://webbook.nist.gov/chemistry/ |
| :---: | ---: |

- Zero-field splitting:
- O_{2} : $0.156 \mathrm{~cm}^{-1}$
- S_{2} : $23.5 \mathrm{~cm}^{-1}$

Chalcogen dimers: zero-field splitting

- Oxygen dimer:

| Term $T_{e}\left(\mathrm{~cm}^{-1}\right)$
 $\mathrm{X}^{3} \Sigma_{g}^{-}$ 0.0
 $\mathrm{a}^{1} \Delta_{g}$ 7918.1
 $\mathrm{~b}^{1} \Sigma_{g}^{+}$ 13195.1
 http://webbook.nist.gov/chemistry/ |
| :---: | ---: |

- Zero-field splitting:
- O_{2} : $0.156 \mathrm{~cm}^{-1}$
- S_{2} : $23.5 \mathrm{~cm}^{-1}$
- Se_{2} : $510.0 \mathrm{~cm}^{-1}$

Chalcogen dimers: zero-field splitting

- Oxygen dimer:

| Term $T_{e}\left(\mathrm{~cm}^{-1}\right)$
 $\mathrm{X}^{3} \Sigma_{g}^{-}$ 0.0
 $\mathrm{a}^{1} \Delta_{g}$ 7918.1
 $\mathrm{~b}^{1} \Sigma_{g}^{+}$ 13195.1
 http://webbook.nist.gov/chemistry/ |
| :---: | ---: |

- Zero-field splitting:
- O_{2} : $0.156 \mathrm{~cm}^{-1}$
- S_{2} : $23.5 \mathrm{~cm}^{-1}$
- Se_{2} : $510.0 \mathrm{~cm}^{-1}$
- Te_{2} : $1974.9 \mathrm{~cm}^{-1}$

Chalcogen dimers: zero-field splitting

- Oxygen dimer:

| Term $T_{e}\left(\mathrm{~cm}^{-1}\right)$
 $\mathrm{X}^{3} \Sigma_{g}^{-}$ 0.0
 $\mathrm{a}^{1} \Delta_{g}$ 7918.1
 $\mathrm{~b}^{1} \Sigma_{g}^{+}$ 13195.1
 http://webbook.nist.gov/chemistry/ |
| :---: | ---: |

- Zero-field splitting:
- O_{2} : $0.156 \mathrm{~cm}^{-1}$
- S_{2} : $23.5 \mathrm{~cm}^{-1}$
- Se_{2} : $510.0 \mathrm{~cm}^{-1}$
- Te_{2} : $1974.9 \mathrm{~cm}^{-1}$
- Po_{2} : $\sim 7000 \mathrm{~cm}^{-1}$

Relativistic effects: valence orbital energies $\left(E_{h}\right)$ of the uranium atom

- Scalar relativistic effects (SR): relativistic mass increase of the electron
- Spin-orbit effects (SO): the interaction of the electron spin with the magnetic field induced by charges (e.g. nuclei and other electrons) in relative motion

Summary so far

- Relativistic effects are important for heavy elements ($Z>40$). We distinguish between:

Summary so far

- Relativistic effects are important for heavy elements ($Z>40$). We distinguish between:
- scalar relativistic effects are associated with the relativistic mass increase of the electron

$$
\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} ; \quad c=137.0359998 \text { a.u.; One-electron atom: } \quad v_{1 s}=Z \text { a.u. }
$$

and modifies size and energetics of orbitals

Summary so far

- Relativistic effects are important for heavy elements ($Z>40$). We distinguish between:
- scalar relativistic effects are associated with the relativistic mass increase of the electron

$$
\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} ; \quad c=137.0359998 \text { a.u.; One-electron atom: } \quad v_{1 s}=Z \text { a.u. }
$$

and modifies size and energetics of orbitals

- spin-orbit interaction is due to magnetic induction and modifies energy levels and allowed transitions

Summary so far

- Relativistic effects are important for heavy elements ($Z>40$). We distinguish between:
- scalar relativistic effects are associated with the relativistic mass increase of the electron

$$
\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} ; \quad c=137.0359998 \text { a.u.; One-electron atom: } \quad v_{1 s}=Z \text { a.u. }
$$

and modifies size and energetics of orbitals

- spin-orbit interaction is due to magnetic induction and modifies energy levels and allowed transitions
- Since relativistic effects are most pronounced in the core region, a straightforward and widely used way to introduce relativity in quantum chemical calculations is to replace the core orbitals by an effective potential, leading to the pseudopotential approach.

Summary so far

- Relativistic effects are important for heavy elements ($Z>40$). We distinguish between:
- scalar relativistic effects are associated with the relativistic mass increase of the electron

$$
\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} ; \quad c=137.0359998 \text { a.u.; One-electron atom: } \quad v_{1 s}=Z \text { a.u. }
$$

and modifies size and energetics of orbitals

- spin-orbit interaction is due to magnetic induction and modifies energy levels and allowed transitions
- Since relativistic effects are most pronounced in the core region, a straightforward and widely used way to introduce relativity in quantum chemical calculations is to replace the core orbitals by an effective potential, leading to the pseudopotential approach.
- In the following we shall, however, first look at Hamiltonians derived directly from the Dirac equation.

Wolfgang Pauli and 137

Throughout his life, Pauli was preoccupied with the question of why the fine structure constant, a dimensionless fundamental constant, has a value nearly equal to $1 / 137$.

Wolfgang Pauli (1900-1958)

Wolfgang Pauli and 137

In 1958, Pauli fell ill with pancreatic cancer. When his last assistant, Charles Enz, visited him at the Rotkreuz hospital in Zurich, Pauli asked him: "Did you see the room number?" It was number 137. Pauli died in that room on December 15, 1958.

Wolfgang Pauli (1900-1958)

The Old and the New Testament

- Handbuch der Physik (1926): The Old Testament
- Handbuch der Physik (1933): The New Testament

The Old and the New Testament

- Handbuch der Physik (1926): The Old Testament
- Handbuch der Physik (1933): The New Testament

Inhaltsverzeichnis.

Die allgemeinen Prinzipien der Wellenmechanik. Von Wolfgang Pauli, Ord. Professor für theoretische Physik an der Eidgenössischen Technischen Hochschule, Zürich
Scite
(Schweiz) (Schweiz)
1
A. Unrelativistische Theorie . 1
B. Relativistisches Einkörperproblem .
.
a) Diracs Wellengleichung des Elektrons 137
b) Naherungen und Grenzen der Diracschen Theorie 160

Quantenelektrodynamik. Von Dr. A. O. Gunnar Källén, Nordisk Institut für Teoretisk
Atomiysik, Kopenhagen (Dänemark). Mit 7 Figuren
169
I. Allgemeine Grundlagen . 169
II. Das freie elektromagnetische Feld 181
III. Das freie Dtrac-Feld . 2
IV. Das Dirac-Feld und das elektromagnetische Feld in Wechselwirkung. Störungstheorie

230
V. Elementare Anwendungen . 258
VI. Strahlungstheoretische Korrekturen in erster, nichtverschwindender Näherung 279
VII. Allgemeine Theorie der Renormierung 334

Sachverzeichnis (Deutsch-Englisch) . 365
Subject Index (English-German)

Theoretical model chemistries

Theoretical model chemistries

The electronic Hamiltonian, relativistic or not, has the same generic form

$$
\hat{H}=V_{N N}+\sum_{i} \hat{h}(i)+\frac{1}{2} \sum_{i \neq j} \hat{g}(i, j) ; \quad V_{N N}=\frac{1}{2} \sum_{K \neq L} \frac{z_{K} z_{L}}{R_{K L}}
$$

Theoretical model chemistries

The electronic Hamiltonian, relativistic or not, has the same generic form

$$
\hat{H}=V_{N N}+\sum_{i} \hat{h}(i)+\frac{1}{2} \sum_{i \neq j} \hat{g}(i, j) ; \quad V_{N N}=\frac{1}{2} \sum_{K \neq L} \frac{z_{K} z_{L}}{R_{K L}}
$$

Computational cost: $\times N^{y}$

The non-relativistic electronic Hamiltonian

$$
\hat{H}=V_{N N}+\sum_{i} \hat{h}(i)+\frac{1}{2} \sum_{i \neq j} \hat{g}(i, j) ; \quad V_{N N}=\frac{1}{2} \sum_{K \neq L} \frac{z_{K} z_{L}}{R_{K L}}
$$

The non-relativistic electronic Hamiltonian

$$
\hat{H}=V_{N N}+\sum_{i} \hat{h}(i)+\frac{1}{2} \sum_{i \neq j} \hat{g}(i, j) ; \quad V_{N N}=\frac{1}{2} \sum_{K \neq L} \frac{z_{K} z_{L}}{R_{K L}}
$$

- One- and two-electron operators:

$$
\hat{h}=\hat{h}_{0}+\hat{v}_{e N} ; \quad \hat{g}(1,2)=\frac{1}{r_{12}}
$$

The non-relativistic electronic Hamiltonian

$$
\hat{H}=V_{N N}+\sum_{i} \hat{h}(i)+\frac{1}{2} \sum_{i \neq j} \hat{g}(i, j) ; \quad V_{N N}=\frac{1}{2} \sum_{K \neq L} \frac{z_{K} z_{L}}{R_{K L}}
$$

- One- and two-electron operators:

$$
\hat{h}=\hat{h}_{0}+\hat{v}_{e N} ; \quad \hat{g}(1,2)=\frac{1}{r_{12}}
$$

- Quantization:

$$
E \rightarrow i \frac{\partial}{\partial t} ; \mathbf{p} \rightarrow \hat{\mathbf{p}}=-i \nabla
$$

The non-relativistic electronic Hamiltonian

$$
\hat{H}=V_{N N}+\sum_{i} \hat{h}(i)+\frac{1}{2} \sum_{i \neq j} \hat{g}(i, j) ; \quad V_{N N}=\frac{1}{2} \sum_{K \neq L} \frac{z_{K} z_{L}}{R_{K L}}
$$

- One- and two-electron operators:

$$
\hat{h}=\hat{h}_{0}+\hat{v}_{e N} ; \quad \hat{g}(1,2)=\frac{1}{r_{12}}
$$

- Quantization:

$$
E \rightarrow i \frac{\partial}{\partial t} ; \mathbf{p} \rightarrow \hat{\mathbf{p}}=-i \boldsymbol{\nabla}
$$

- Wave equation for non-relativistic free particle:

$$
E=\frac{1}{2} m v^{2}=\frac{p^{2}}{2 m} ; \quad \rightarrow i \frac{\partial}{\partial t} \psi=\frac{\hat{p}^{2}}{2 m} \psi=\hat{h}_{0} \psi
$$

Relativistic free particle: classical mechanics

- Relativistic free-particle

$$
E= \pm \sqrt{m^{2} c^{4}+c^{2} p^{2}} \in\left\langle-\infty,-m c^{2}\right| \cup\left|+m c^{2},+\infty\right\rangle
$$

Relativistic free particle: classical mechanics

- Relativistic free-particle

$$
E= \pm \sqrt{m^{2} c^{4}+c^{2} p^{2}} \in\left\langle-\infty,-m c^{2}\right| \cup\left|+m c^{2},+\infty\right\rangle
$$

- Classical particles can only change energy continuously, so we can exclude the negative-energy branch

Relativistic free particle: classical mechanics

- Relativistic free-particle

$$
E= \pm \sqrt{m^{2} c^{4}+c^{2} p^{2}} \in\left\langle-\infty,-m c^{2}\right| \cup\left|+m c^{2},+\infty\right\rangle
$$

- Classical particles can only change energy continuously, so we can exclude the negative-energy branch
- Connecting to the non-relativistic expression

$$
E=+m c^{2} \sqrt{1+\left(\frac{p}{m c}\right)^{2}}=m c^{2}+\frac{p^{2}}{2 m}-\frac{p^{4}}{8 m^{3} c^{2}}+\ldots
$$

Relativistic free particle: classical mechanics

- Relativistic free-particle

$$
E= \pm \sqrt{m^{2} c^{4}+c^{2} p^{2}} \in\left\langle-\infty,-m c^{2}\right| \cup\left|+m c^{2},+\infty\right\rangle
$$

- Classical particles can only change energy continuously, so we can exclude the negative-energy branch
- Connecting to the non-relativistic expression

$$
E=+m c^{2} \sqrt{1+\left(\frac{p}{m c}\right)^{2}}=m c^{2}+\frac{p^{2}}{2 m}-\frac{p^{4}}{8 m^{3} c^{2}}+\ldots
$$

- The first term explodes in the non-relativistic limit $(c \rightarrow \infty)$, but can be avoided by aligning the relativistic energy scale with the non-relativistic one

$$
E \rightarrow E-m c^{2}
$$

(only works for positive-energy branch)

Dirac equation for a relativistic free particle

- Dirac equation

$$
\left(h_{0}-i \frac{\partial}{\partial t}\right) \psi=0
$$

with relativistic free-particle Hamiltonian

$$
\hat{h}_{0}=\beta m c^{2}+c(\boldsymbol{\alpha} \cdot \mathbf{p})=\left[\begin{array}{cc}
+m c^{2} & c(\boldsymbol{\sigma} \cdot \mathbf{p}) \\
c(\boldsymbol{\sigma} \cdot \mathbf{p}) & -m c^{2}
\end{array}\right]
$$

Dirac equation for a relativistic free particle

- Dirac equation

$$
\left(h_{0}-i \frac{\partial}{\partial t}\right) \psi=0
$$

with relativistic free-particle Hamiltonian

$$
\hat{h}_{0}=\beta m c^{2}+c(\boldsymbol{\alpha} \cdot \mathbf{p})=\left[\begin{array}{cc}
+m c^{2} & c(\boldsymbol{\sigma} \cdot \mathbf{p}) \\
c(\boldsymbol{\sigma} \cdot \mathbf{p}) & -m c^{2}
\end{array}\right]
$$

- The solutions are 4-component vector functions

$$
\psi=\left[\begin{array}{l}
\psi^{L} \\
\psi^{S}
\end{array}\right]=\left[\begin{array}{l}
\psi^{L \alpha} \\
\psi^{L \beta} \\
\psi^{S \alpha} \\
\psi^{S \beta}
\end{array}\right]
$$

Dirac equation for a relativistic free particle

- Dirac equation

$$
\left(h_{0}-i \frac{\partial}{\partial t}\right) \psi=0
$$

with relativistic free-particle Hamiltonian

$$
\hat{h}_{0}=\beta m c^{2}+c(\boldsymbol{\alpha} \cdot \mathbf{p})=\left[\begin{array}{cc}
+m c^{2} & c(\boldsymbol{\sigma} \cdot \mathbf{p}) \\
c(\boldsymbol{\sigma} \cdot \mathbf{p}) & -m c^{2}
\end{array}\right]
$$

- The solutions are 4-component vector functions

$$
\psi=\left[\begin{array}{l}
\psi^{L} \\
\psi^{S}
\end{array}\right]=\left[\begin{array}{l}
\psi^{L \alpha} \\
\psi^{L \beta} \\
\psi^{S \alpha} \\
\psi^{S \beta}
\end{array}\right]
$$

- Why four components ?

Adding electromagnetic fields:

The principle of minimal electromagnetic coupling
(M. Gell-Mann, Nuovo Cimento Suppl. 4 (1956) 848)

- The Hamiltonian of a particle interacting with external fields is obtained from the free-particle Hamiltonian through the substitutions:

$$
p_{\mu} \rightarrow p_{\mu}-q A_{\mu} \Rightarrow \text { Electron: } q=-e \Rightarrow \begin{aligned}
& \mathbf{p} \rightarrow \mathbf{p}+e \mathbf{A} \\
& E \rightarrow E+e \phi
\end{aligned}
$$

Adding electromagnetic fields:

The principle of minimal electromagnetic coupling
(M. Gell-Mann, Nuovo Cimento Suppl. 4 (1956) 848)

- The Hamiltonian of a particle interacting with external fields is obtained from the free-particle Hamiltonian through the substitutions:

$$
p_{\mu} \rightarrow p_{\mu}-q A_{\mu} \Rightarrow \text { Electron: } q=-e \Rightarrow \begin{aligned}
& \mathbf{p} \rightarrow \mathbf{p}+e \mathbf{A} \\
& E \rightarrow E+e \phi
\end{aligned}
$$

- The coupling of particle and field is minimal because it involves only the charge of the particle.

Adding electromagnetic fields:

The principle of minimal electromagnetic coupling
(M. Gell-Mann, Nuovo Cimento Suppl. 4 (1956) 848)

- The Hamiltonian of a particle interacting with external fields is obtained from the free-particle Hamiltonian through the substitutions:

$$
p_{\mu} \rightarrow p_{\mu}-q A_{\mu} \Rightarrow \text { Electron: } q=-e \Rightarrow \begin{aligned}
& \mathbf{p} \rightarrow \mathbf{p}+e \mathbf{A} \\
& E \rightarrow E+e \phi
\end{aligned}
$$

- The coupling of particle and field is minimal because it involves only the charge of the particle.
- The complete Dirac Hamiltonian reads

$$
\hat{h}_{D}=\beta^{\prime} m c^{2}+c(\boldsymbol{\alpha} \cdot \boldsymbol{\pi})-e \phi=\left[\begin{array}{cc}
-e \phi & c(\boldsymbol{\sigma} \cdot \boldsymbol{\pi}) \\
c(\boldsymbol{\sigma} \cdot \boldsymbol{\pi}) & -2 m c^{2}-e \phi
\end{array}\right]
$$

where appears the mechanical momentum $\boldsymbol{\pi}=\mathbf{p}+e \mathbf{A}$

Adding electromagnetic fields:

The principle of minimal electromagnetic coupling
(M. Gell-Mann, Nuovo Cimento Suppl. 4 (1956) 848)

- The Hamiltonian of a particle interacting with external fields is obtained from the free-particle Hamiltonian through the substitutions:

$$
p_{\mu} \rightarrow p_{\mu}-q A_{\mu} \Rightarrow \text { Electron: } q=-e \Rightarrow \begin{aligned}
& \mathbf{p} \rightarrow \mathbf{p}+e \mathbf{A} \\
& E \rightarrow E+e \phi
\end{aligned}
$$

- The coupling of particle and field is minimal because it involves only the charge of the particle.
- The complete Dirac Hamiltonian reads

$$
\hat{h}_{D}=\beta^{\prime} m c^{2}+c(\boldsymbol{\alpha} \cdot \boldsymbol{\pi})-e \phi=\left[\begin{array}{cc}
-e \phi & c(\boldsymbol{\sigma} \cdot \boldsymbol{\pi}) \\
c(\boldsymbol{\sigma} \cdot \boldsymbol{\pi}) & -2 m c^{2}-e \phi
\end{array}\right]
$$

where appears the mechanical momentum $\boldsymbol{\pi}=\mathbf{p}+e \mathbf{A}$

- Energy shift: $\beta \rightarrow \beta^{\prime}-m c^{2} \Rightarrow E \rightarrow E^{\prime}=E-m c^{2}$

Negative-energy solutions

- Classical mechanics does not allow energy discontinuities, and so one may reject the negative-energy solutions.

Negative-energy solutions

- Classical mechanics does not allow energy discontinuities, and so one may reject the negative-energy solutions.
- In quantum mechanics, these solutions are problematic because there is always a finite transition probability.

Negative-energy solutions

- Classical mechanics does not allow energy discontinuities, and so one may reject the negative-energy solutions.
- In quantum mechanics, these solutions are problematic because there is always a finite transition probability.
- It can be shown that the hydrogen atom would not be stable and would disintegrate in $10^{-9} \mathrm{~s}$.

Negative-energy solutions

- Classical mechanics does not allow energy discontinuities, and so one may reject the negative-energy solutions.
- In quantum mechanics, these solutions are problematic because there is always a finite transition probability.
- It can be shown that the hydrogen atom would not be stable and would disintegrate in $10^{-9} \mathrm{~s}$.
- The electron descending down the negative-energy band would cause an ultraviolet catastrophe.

Electron-positron pair creation

Electron-positron pair creation

The solution proposed by Dirac

- All negative-energy solutions are occupied.

Electron-positron pair creation

The solution proposed by Dirac

- All negative-energy solutions are occupied.
- The Pauli exclusion principle then hinder electrons descending down the negative-energy branch.

Electron-positron pair creation

The solution proposed by Dirac

- All negative-energy solutions are occupied.
- The Pauli exclusion principle then hinder electrons descending down the negative-energy branch.
- The excitation of an electron from the negative-energy band leaves a hole of positive charge, corresponding to the creation of a electron-positron pair.

Electron-positron pair creation

The solution proposed by Dirac

- All negative-energy solutions are occupied.
- The Pauli exclusion principle then hinder electrons descending down the negative-energy branch.
- The excitation of an electron from the negative-energy band leaves a hole of positive charge, corresponding to the creation of a electron-positron pair.
 The theory of Dirac is confirmed in 1932 when the US physicist Carl Anderson discover the positron.

Charge conjugation symmetry

- Introduction of fields require speceification of charge.

Charge conjugation symmetry

- Introduction of fields require speceification of charge.
- For $q=-e$, all solutions, of both positive and negative energy, are electronic.

Charge conjugation symmetry

- Introduction of fields require speceification of charge.
- For $q=-e$, all solutions, of both positive and negative energy, are electronic.
- For $q=+e$, all solutions are positronic.

Charge conjugation symmetry

- Introduction of fields require speceification of charge.
- For $q=-e$, all solutions, of both positive and negative energy, are electronic.
- For $q=+e$, all solutions are positronic.
- Solutions of opposite charge are related by charge conjugation symmetry.

Constants of motion

- Heisenberg's equation:

$$
\frac{d\langle\Psi| \hat{A}|\Psi\rangle}{d t}=-i\langle\Psi|[\hat{A}, \hat{H}]|\Psi\rangle+\langle\Psi| \frac{\partial \hat{A}}{\partial t}|\Psi\rangle
$$

Constants of motion

- Heisenberg's equation:

$$
\frac{d\langle\Psi| \hat{A}|\Psi\rangle}{d t}=-i\langle\Psi|[\hat{A}, \hat{H}]|\Psi\rangle+\langle\Psi| \frac{\partial \hat{A}}{\partial t}|\Psi\rangle
$$

- Constant of motion:

$$
\frac{d\langle\Psi| \hat{A}|\Psi\rangle}{d t}=0
$$

Constants of motion

- Heisenberg's equation:

$$
\frac{d\langle\Psi| \hat{A}|\Psi\rangle}{d t}=-i\langle\Psi|[\hat{A}, \hat{H}]|\Psi\rangle+\langle\Psi| \frac{\partial \hat{A}}{\partial t}|\Psi\rangle
$$

- Constant of motion:

$$
\frac{d\langle\Psi| \hat{A}|\Psi\rangle}{d t}=0
$$

- Free particle : conservation of (linear) momentum

$$
\left[\mathbf{p}, \hat{h}_{0}^{N R}\right]=0=\left[\mathbf{p}, \hat{h}_{0}^{R}\right]
$$

Spin and angular momentum

- Non-relativistic free particle:

$$
\begin{aligned}
& {\left[\ell, \hat{h}_{0}^{N R}\right]=\frac{i}{m}(\mathbf{p} \times \mathbf{p})=0} \\
& {\left[\mathbf{s}, \hat{h}_{0}^{N R}\right]}
\end{aligned}
$$

Spin and angular momentum

- Non-relativistic free particle:

$$
\begin{array}{ll}
{\left[\ell, \hat{h}_{0}^{N R}\right]=\frac{i}{m}(\mathbf{p} \times \mathbf{p})} & =0 \\
{\left[\mathbf{s}, \hat{h}_{0}^{N R}\right]} & =0
\end{array}
$$

- Relativistic free particle:

$$
\begin{aligned}
& {\left[\ell, \hat{h}_{0}^{R}\right]=i(c \boldsymbol{\alpha} \times \mathbf{p}) \neq 0} \\
& {\left[\boldsymbol{\Sigma}, \hat{h}_{0}^{R}\right]=-2 i(c \boldsymbol{\alpha} \times \mathbf{p}) \neq 0}
\end{aligned}
$$

Spin and angular momentum

- Non-relativistic free particle:

$$
\begin{array}{ll}
{\left[\ell, \hat{h}_{0}^{N R}\right]=\frac{i}{m}(\mathbf{p} \times \mathbf{p})} & =0 \\
{\left[\mathbf{s}, \hat{h}_{0}^{N R}\right]} & =0
\end{array}
$$

- Relativistic free particle:

$$
\begin{aligned}
& {\left[\ell, \hat{h}_{0}^{R}\right]=i(c \boldsymbol{\alpha} \times \mathbf{p}) \neq 0} \\
& {\left[\boldsymbol{\Sigma}, \hat{h}_{0}^{R}\right]=-2 i(c \boldsymbol{\alpha} \times \mathbf{p}) \neq 0}
\end{aligned}
$$

- The relativistic free-particle Hamiltonian commutes with total angular momentum $j=\ell+\frac{1}{2} \boldsymbol{\Sigma}$ and carries spin.

Spin and angular momentum

- Non-relativistic free particle:

$$
\begin{aligned}
& {\left[\ell, \hat{h}_{0}^{N R}\right]=\frac{i}{m}(\mathbf{p} \times \mathbf{p})=0} \\
& {\left[\mathbf{s}, \hat{h}_{0}^{N R}\right]}
\end{aligned}
$$

- Relativistic free particle:

$$
\begin{aligned}
& {\left[\ell, \hat{h}_{0}^{R}\right]=i(c \boldsymbol{\alpha} \times \mathbf{p}) \neq 0} \\
& {\left[\boldsymbol{\Sigma}, \hat{h}_{0}^{R}\right]=-2 i(c \boldsymbol{\alpha} \times \mathbf{p}) \neq 0}
\end{aligned}
$$

- The relativistic free-particle Hamiltonian commutes with total angular momentum $j=\ell+\frac{1}{2} \boldsymbol{\Sigma}$ and carries spin.
- The economy of Nature's laws.

Non-relativistic Hamiltonian in external fields

- Minimal substitution gives

$$
h_{0}^{N R}=\frac{\hat{p}^{2}}{2 m} \quad \rightarrow \quad h^{N R}=\frac{\hat{\pi}^{2}}{2 m}-e \phi=\frac{\hat{p}^{2}}{2 m}+\frac{e}{2 m}[\hat{\mathbf{p}} \cdot \mathbf{A}+\mathbf{A} \cdot \hat{\mathbf{p}}]+\frac{e^{2} A^{2}}{2 m}-e \phi
$$

Non-relativistic Hamiltonian in external fields

- Minimal substitution gives

$$
h_{0}^{N R}=\frac{\hat{p}^{2}}{2 m} \quad \rightarrow \quad h^{N R}=\frac{\hat{\pi}^{2}}{2 m}-e \phi=\frac{\hat{p}^{2}}{2 m}+\frac{e}{2 m}[\hat{\mathbf{p}} \cdot \mathbf{A}+\mathbf{A} \cdot \hat{\mathbf{p}}]+\frac{e^{2} A^{2}}{2 m}-e \phi
$$

- no spin interactions

Non-relativistic Hamiltonian in external fields

- Minimal substitution gives

$$
h_{0}^{N R}=\frac{\hat{p}^{2}}{2 m} \quad \rightarrow \quad h^{N R}=\frac{\hat{\pi}^{2}}{2 m}-e \phi=\frac{\hat{p}^{2}}{2 m}+\frac{e}{2 m}[\hat{\mathbf{p}} \cdot \mathbf{A}+\mathbf{A} \cdot \hat{\mathbf{p}}]+\frac{e^{2} A^{2}}{2 m}-e \phi
$$

- no spin interactions
- The Dirac identity

$$
(\boldsymbol{\sigma} \cdot \mathbf{A})(\boldsymbol{\sigma} \cdot \mathbf{B})=\mathbf{A} \cdot \mathbf{B}+i \sigma \cdot(\mathbf{A} \times \mathbf{B})
$$

Non-relativistic Hamiltonian in external fields

- Minimal substitution gives

$$
h_{0}^{N R}=\frac{\hat{p}^{2}}{2 m} \quad \rightarrow \quad h^{N R}=\frac{\hat{\pi}^{2}}{2 m}-e \phi=\frac{\hat{p}^{2}}{2 m}+\frac{e}{2 m}[\hat{\mathbf{p}} \cdot \mathbf{A}+\mathbf{A} \cdot \hat{\mathbf{p}}]+\frac{e^{2} A^{2}}{2 m}-e \phi
$$

- no spin interactions
- The Dirac identity

$$
(\boldsymbol{\sigma} \cdot \mathbf{A})(\boldsymbol{\sigma} \cdot \mathbf{B})=\mathbf{A} \cdot \mathbf{B}+i \sigma \cdot(\mathbf{A} \times \mathbf{B})
$$

- A special case

$$
(\boldsymbol{\sigma} \cdot \hat{\mathbf{p}})(\boldsymbol{\sigma} \cdot \hat{\mathbf{p}})=\hat{p}^{2}
$$

suggests that spin is "hidden" in the non-relativistic operator.

Non-relativistic Hamiltonian in external fields

- Minimal substitution gives

$$
h_{0}^{N R}=\frac{\hat{p}^{2}}{2 m} \quad \rightarrow \quad h^{N R}=\frac{\hat{\pi}^{2}}{2 m}-e \phi=\frac{\hat{p}^{2}}{2 m}+\frac{e}{2 m}[\hat{\mathbf{p}} \cdot \mathbf{A}+\mathbf{A} \cdot \hat{\mathbf{p}}]+\frac{e^{2} A^{2}}{2 m}-e \phi
$$

- no spin interactions
- The Dirac identity

$$
(\boldsymbol{\sigma} \cdot \mathbf{A})(\boldsymbol{\sigma} \cdot \mathbf{B})=\mathbf{A} \cdot \mathbf{B}+i \sigma \cdot(\mathbf{A} \times \mathbf{B})
$$

- A special case

$$
(\boldsymbol{\sigma} \cdot \hat{\mathbf{p}})(\boldsymbol{\sigma} \cdot \hat{\mathbf{p}})=\hat{p}^{2}
$$

suggests that spin is "hidden" in the non-relativistic operator.

- Minimal substitution then gives

$$
\begin{aligned}
h_{0}^{N R}=\frac{(\boldsymbol{\sigma} \cdot \hat{\mathbf{p}})^{2}}{2 m} \rightarrow h^{N R} & =\frac{(\boldsymbol{\sigma} \cdot \hat{\boldsymbol{\pi}})^{2}}{2 m}-e \phi \\
& =\frac{\hat{p}^{2}}{2 m}+\frac{e}{2 m}[\hat{\mathbf{p}} \cdot \mathbf{A}+\mathbf{A} \cdot \hat{\mathbf{p}}]+\frac{e^{2} A^{2}}{2 m}+\frac{e}{2 m}(\sigma \cdot \mathbf{B})-e \phi
\end{aligned}
$$

Non-relativistic Hamiltonian in external fields

- Minimal substitution gives

$$
h_{0}^{N R}=\frac{\hat{p}^{2}}{2 m} \quad \rightarrow \quad h^{N R}=\frac{\hat{\pi}^{2}}{2 m}-e \phi=\frac{\hat{p}^{2}}{2 m}+\frac{e}{2 m}[\hat{\mathbf{p}} \cdot \mathbf{A}+\mathbf{A} \cdot \hat{\mathbf{p}}]+\frac{e^{2} A^{2}}{2 m}-e \phi
$$

- no spin interactions
- The Dirac identity

$$
(\boldsymbol{\sigma} \cdot \mathbf{A})(\boldsymbol{\sigma} \cdot \mathbf{B})=\mathbf{A} \cdot \mathbf{B}+i \sigma \cdot(\mathbf{A} \times \mathbf{B})
$$

- A special case

$$
(\boldsymbol{\sigma} \cdot \hat{\mathbf{p}})(\boldsymbol{\sigma} \cdot \hat{\mathbf{p}})=\hat{p}^{2}
$$

suggests that spin is "hidden" in the non-relativistic operator.

- Minimal substitution then gives

$$
\begin{aligned}
h_{0}^{N R}=\frac{(\boldsymbol{\sigma} \cdot \hat{\mathbf{p}})^{2}}{2 m} \rightarrow h^{N R} & =\frac{(\boldsymbol{\sigma} \cdot \hat{\boldsymbol{\pi}})^{2}}{2 m}-e \phi \\
& =\frac{\hat{p}^{2}}{2 m}+\frac{e}{2 m}[\hat{\mathbf{p}} \cdot \mathbf{A}+\mathbf{A} \cdot \hat{\mathbf{p}}]+\frac{e^{2} A^{2}}{2 m}+\frac{e}{2 m}(\sigma \cdot \mathbf{B})-e \phi
\end{aligned}
$$

- Is spin a relativistic effect ?

Charge and current density

- The coupling of particles and fields is relativistic

$$
\left\langle\hat{h}_{i n t}\right\rangle=\int[\rho(\mathbf{r}, t) \phi(\mathbf{r}, t)-\mathbf{j}(\mathbf{r}, t) \cdot \mathbf{A}(\mathbf{r}, t)] d^{3} \mathbf{r}=-\int j_{\mu} A_{\mu} d^{3} \mathbf{r}
$$

Charge and current density

- The coupling of particles and fields is relativistic

$$
\left\langle\hat{h}_{\text {int }}\right\rangle=\int[\rho(\mathbf{r}, t) \phi(\mathbf{r}, t)-\mathbf{j}(\mathbf{r}, t) \cdot \mathbf{A}(\mathbf{r}, t)] d^{3} \mathbf{r}=-\int j_{\mu} A_{\mu} d^{3} \mathbf{r}
$$

- .. and allows us to extract charge and current density

$$
\rho^{R}=\frac{\delta\left\langle\hat{h}_{i n t}\right\rangle}{\delta \phi}=\psi^{\dagger}(\mathbf{r}) \underbrace{\left\{-e l_{4}\right\}}_{\text {density operator }} \psi(\mathbf{r}) ; \quad \mathbf{j}^{R}=-\frac{\delta\left\langle\hat{h}_{i n t}\right\rangle}{\delta \mathbf{A}}=\psi^{\dagger}(\mathbf{r}) \underbrace{\{-e c \alpha\}}_{\text {current operator }} \psi(\mathbf{r})
$$

Charge and current density

- The coupling of particles and fields is relativistic

$$
\left\langle\hat{h}_{i n t}\right\rangle=\int[\rho(\mathbf{r}, t) \phi(\mathbf{r}, t)-\mathbf{j}(\mathbf{r}, t) \cdot \mathbf{A}(\mathbf{r}, t)] d^{3} \mathbf{r}=-\int j_{\mu} A_{\mu} d^{3} \mathbf{r}
$$

- .. and allows us to extract charge and current density

$$
\rho^{R}=\frac{\delta\left\langle\hat{h}_{\text {int }}\right\rangle}{\delta \phi}=\psi^{\dagger}(\mathbf{r}) \underbrace{\left\{-e \mathbf{I}_{4}\right\}}_{\text {density operator }} \psi(\mathbf{r}) ; \quad \mathbf{j}^{R}=-\frac{\delta\left\langle\hat{h}_{\text {int }}\right\rangle}{\delta \mathbf{A}}=\psi^{\dagger}(\mathbf{r}) \underbrace{\{-e c \boldsymbol{\alpha}\}}_{\text {current operator }} \psi(\mathbf{r})
$$

- The corresponding non-relativistic expressions are

$$
\begin{aligned}
\rho^{N R} & =-e \psi^{\dagger}(\mathbf{r}) \psi(\mathbf{r}) \\
\mathbf{j}^{N R} & =-\frac{e}{2 m}\left\{\psi^{\dagger}(\mathbf{r}) \hat{\mathbf{p}} \psi(\mathbf{r})-\psi^{T}(\mathbf{r}) \hat{\mathbf{p}} \psi^{*}(\mathbf{r})\right\}-\frac{e^{2}}{2 m} \psi^{\dagger}(\mathbf{r}) \mathbf{A} \psi(\mathbf{r}) \\
& -\frac{e}{2 m} \boldsymbol{\nabla} \times \psi^{\dagger}(\mathbf{r}) \boldsymbol{\sigma} \psi(\mathbf{r})
\end{aligned}
$$

Charge and current density

- The coupling of particles and fields is relativistic

$$
\left\langle\hat{h}_{i n t}\right\rangle=\int[\rho(\mathbf{r}, t) \phi(\mathbf{r}, t)-\mathbf{j}(\mathbf{r}, t) \cdot \mathbf{A}(\mathbf{r}, t)] d^{3} \mathbf{r}=-\int j_{\mu} A_{\mu} d^{3} \mathbf{r}
$$

- .. and allows us to extract charge and current density

$$
\rho^{R}=\frac{\delta\left\langle\hat{h}_{\text {int }}\right\rangle}{\delta \phi}=\psi^{\dagger}(\mathbf{r}) \underbrace{\left\{-e \mathbf{I}_{4}\right\}}_{\text {density operator }} \psi(\mathbf{r}) ; \quad \mathbf{j}^{R}=-\frac{\delta\left\langle\hat{h}_{\text {int }}\right\rangle}{\delta \mathbf{A}}=\psi^{\dagger}(\mathbf{r}) \underbrace{\{-e c \boldsymbol{\alpha}\}}_{\text {current operator }} \psi(\mathbf{r})
$$

- The corresponding non-relativistic expressions are

$$
\begin{aligned}
\rho^{N R} & =-e \psi^{\dagger}(\mathbf{r}) \psi(\mathbf{r}) \\
\mathbf{j}^{N R} & =-\frac{e}{2 m}\left\{\psi^{\dagger}(\mathbf{r}) \hat{\mathbf{p}} \psi(\mathbf{r})-\psi^{T}(\mathbf{r}) \hat{\mathbf{p}} \psi^{*}(\mathbf{r})\right\}-\frac{e^{2}}{2 m} \psi^{\dagger}(\mathbf{r}) \mathbf{A} \psi(\mathbf{r}) \\
& -\frac{e}{2 m} \boldsymbol{\nabla} \times \psi^{\dagger}(\mathbf{r}) \boldsymbol{\sigma} \psi(\mathbf{r})
\end{aligned}
$$

- The expression for current density is clearly more complicated.

Velocity operators

- Consider the non-relativistic and relativistic velocity operators obtained by the Heisenberg equation of motion

$$
\begin{aligned}
& \frac{d \mathbf{r}}{d t}=-i\left[\mathbf{r}, \hat{h}^{\mathrm{NR}}\right]=-i\left[\mathbf{r}, \frac{\hat{p}^{2}}{2 m}\right]=\frac{\hat{\mathbf{p}}}{m} \\
& \frac{d \mathbf{r}}{d t}=-i\left[\mathbf{r}, \hat{h}^{\mathrm{R}}\right]=c \boldsymbol{\alpha}
\end{aligned}
$$

Velocity operators

- Consider the non-relativistic and relativistic velocity operators obtained by the Heisenberg equation of motion

$$
\begin{aligned}
& \frac{d \mathbf{r}}{d t}=-i\left[\mathbf{r}, \hat{h}^{\mathrm{NR}}\right]=-i\left[\mathbf{r}, \frac{\hat{p}^{2}}{2 m}\right]=\frac{\hat{\mathbf{p}}}{m} \\
& \frac{d \mathbf{r}}{d t}=-i\left[\mathbf{r}, \hat{h}^{\mathrm{R}}\right]=c \alpha
\end{aligned}
$$

- The curious form of the relativistic velocity operator is due to Zitterbewegung, to be explained later.

(Number) density of iodobenzene

$$
\rho^{R}=\rho^{L}+\rho^{S}
$$

(isosurface 0.01)

(Number) density of iodobenzene

$$
\rho^{R}=\rho^{L}+\rho^{S}
$$

(isosurface 0.01)
(isosurface 0.0001)

(Number) density of iodobenzene

(Number) density of iodobenzene

Two-electron interaction

- General form:

$$
g(1,2)=q_{1} \phi_{2}-q_{1} \mathbf{v}_{1} \cdot \mathbf{A}_{2}
$$

Two-electron interaction

- General form:

$$
g(1,2)=q_{1} \phi_{2}-q_{1} \mathbf{v}_{1} \cdot \mathbf{A}_{2}
$$

- Coulomb gauge:

$$
\phi\left(\mathbf{r}_{1}, t\right)=\int \frac{\rho\left(\mathbf{r}_{2}, t\right)}{r_{12}} d^{3} \mathbf{r}_{2} ; \quad \mathbf{A}\left(\mathbf{r}_{1}, t\right)=\mathbf{A}_{\perp}\left(\mathbf{r}_{1}, t\right)=\frac{4 \pi}{c^{2}} \int \frac{\mathbf{j}_{\perp}\left(\mathbf{r}_{2}, t_{r}\right)}{r_{12}} d^{3} \mathbf{r}_{2}
$$

Two-electron interaction

- General form:

$$
g(1,2)=q_{1} \phi_{2}-q_{1} \mathbf{v}_{1} \cdot \mathbf{A}_{2}
$$

- Coulomb gauge:

$$
\phi\left(\mathbf{r}_{1}, t\right)=\int \frac{\rho\left(\mathbf{r}_{2}, t\right)}{r_{12}} d^{3} \mathbf{r}_{2} ; \quad \mathbf{A}\left(\mathbf{r}_{1}, t\right)=\mathbf{A}_{\perp}\left(\mathbf{r}_{1}, t\right)=\frac{4 \pi}{c^{2}} \int \frac{\mathbf{j}_{\perp}\left(\mathbf{r}_{2}, t_{r}\right)}{r_{12}} d^{3} \mathbf{r}_{2}
$$

- Quantification and truncation

$$
\hat{g}(1,2)=\frac{1}{r_{12}}-\underbrace{[\underbrace{\frac{c \alpha_{i} \cdot c \alpha_{j}}{c^{2} r_{12}}}_{\text {Gaunt }}+\frac{\left(c \boldsymbol{\alpha}_{1} \cdot \nabla_{1}\right)\left(c \alpha_{2} \cdot \nabla_{2}\right) r_{12}}{2 c^{2}}]}_{\text {Breit }}+O\left(c^{-2}\right)
$$

4-component relativistic Hamiltonian

- Generic form of electronic Hamiltonian:

$$
H=V_{N N}+\sum_{i} h(i)+\frac{1}{2} \sum_{i \neq j} g(i, j) ; \quad h(i)=h_{0}+V_{e N}
$$

4-component relativistic Hamiltonian

- Generic form of electronic Hamiltonian:

$$
H=V_{N N}+\sum_{i} h(i)+\frac{1}{2} \sum_{i \neq j} g(i, j) ; \quad h(i)=h_{0}+V_{e N}
$$

- One-electron operator: Dirac operator in the molecular field

$$
\hat{h}_{D}(i)=\beta_{i}^{\prime} m c^{2}+c\left(\boldsymbol{\alpha}_{i} \cdot \mathbf{p}_{i}\right)+\hat{V}_{e N}
$$

4-component relativistic Hamiltonian

- Generic form of electronic Hamiltonian:

$$
H=V_{N N}+\sum_{i} h(i)+\frac{1}{2} \sum_{i \neq j} g(i, j) ; \quad h(i)=h_{0}+V_{e N}
$$

- One-electron operator: Dirac operator in the molecular field

$$
\hat{h}_{D}(i)=\beta_{i}^{\prime} m c^{2}+c\left(\boldsymbol{\alpha}_{i} \cdot \mathbf{p}_{i}\right)+\hat{V}_{e N}
$$

- where we have introduced $\beta^{\prime}=\beta-1$ to align with the non-relativistic energy scale

4-component relativistic Hamiltonian

- Generic form of electronic Hamiltonian:

$$
H=V_{N N}+\sum_{i} h(i)+\frac{1}{2} \sum_{i \neq j} g(i, j) ; \quad h(i)=h_{0}+V_{e N}
$$

- One-electron operator: Dirac operator in the molecular field

$$
\hat{h}_{D}(i)=\beta_{i}^{\prime} m c^{2}+c\left(\boldsymbol{\alpha}_{i} \cdot \mathbf{p}_{i}\right)+\hat{V}_{e N}
$$

- where we have introduced $\beta^{\prime}=\beta-1$ to align with the non-relativistic energy scale
- Two-electron operator: (Coulomb gauge)

$$
\begin{aligned}
\hat{g}(i, j) & =\frac{1}{r_{i j}} \\
& -\frac{c \alpha_{i} \cdot c \alpha_{j}}{c^{2} r_{i j}}-\frac{\left(c \alpha_{i} \cdot \nabla_{i}\right)\left(c \alpha_{j} \cdot \nabla_{j}\right) r_{i j}}{2 c^{2}} \\
& +\ldots
\end{aligned}
$$

2-component relativistic Hamiltonians

2-component relativistic Hamiltonians

- Starting from the Dirac equation in a molecular field

$$
\left[\begin{array}{cc}
V & c(\boldsymbol{\sigma} \cdot \mathbf{p}) \\
c(\boldsymbol{\sigma} \cdot \mathbf{p}) & V-2 m c^{2}
\end{array}\right]\left[\begin{array}{c}
\psi^{L} \\
\psi^{S}
\end{array}\right]=\left[\begin{array}{c}
\psi^{L} \\
\psi^{S}
\end{array}\right] E
$$

we would like to generate a 2-component Hamiltonian h_{++}which reproduces the positive-energy spectrum of the parent Hamiltonian.

2-component relativistic Hamiltonians

- Starting from the Dirac equation in a molecular field

$$
\left[\begin{array}{cc}
V & c(\boldsymbol{\sigma} \cdot \mathbf{p}) \\
c(\boldsymbol{\sigma} \cdot \mathbf{p}) & V-2 m c^{2}
\end{array}\right]\left[\begin{array}{c}
\psi^{L} \\
\psi^{S}
\end{array}\right]=\left[\begin{array}{c}
\psi^{L} \\
\psi^{S}
\end{array}\right] E
$$

we would like to generate a 2-component Hamiltonian h_{++}which reproduces the positive-energy spectrum of the parent Hamiltonian.

- This can be accomplished by a unitary block diagonalization
L. L. Foldy, S. A. Wouthuysen, Phys. Rev. 78 (1950) 29

$$
U^{\dagger}\left[\begin{array}{ll}
h_{L L} & h_{L S} \\
h_{S L} & h_{S S}
\end{array}\right] U=\left[\begin{array}{cc}
h_{++} & 0 \\
0 & h_{--}
\end{array}\right]
$$

2-component relativistic Hamiltonians

- Starting from the Dirac equation in a molecular field

$$
\left[\begin{array}{cc}
V & c(\boldsymbol{\sigma} \cdot \mathbf{p}) \\
c(\boldsymbol{\sigma} \cdot \mathbf{p}) & V-2 m c^{2}
\end{array}\right]\left[\begin{array}{l}
\psi^{L} \\
\psi^{S}
\end{array}\right]=\left[\begin{array}{c}
\psi^{L} \\
\psi^{S}
\end{array}\right] E
$$

we would like to generate a 2-component Hamiltonian h_{++}which reproduces the positive-energy spectrum of the parent Hamiltonian.

- This can be accomplished by a unitary block diagonalization
L. L. Foldy, S. A. Wouthuysen, Phys. Rev. 78 (1950) 29

$$
U^{\dagger}\left[\begin{array}{ll}
h_{L L} & h_{L S} \\
h_{S L} & h_{S S}
\end{array}\right] U=\left[\begin{array}{cc}
h_{++} & 0 \\
0 & h_{--}
\end{array}\right]
$$

- or, equivalently, by elimination of the small components followed by renormalization of the transformed large components.

2-component relativistic Hamiltonians

- Starting from the Dirac equation in a molecular field

$$
\left[\begin{array}{cc}
V & c(\boldsymbol{\sigma} \cdot \mathbf{p}) \\
c(\boldsymbol{\sigma} \cdot \mathbf{p}) & V-2 m c^{2}
\end{array}\right]\left[\begin{array}{l}
\psi^{L} \\
\psi^{S}
\end{array}\right]=\left[\begin{array}{c}
\psi^{L} \\
\psi^{S}
\end{array}\right] E
$$

we would like to generate a 2-component Hamiltonian h_{++}which reproduces the positive-energy spectrum of the parent Hamiltonian.

- This can be accomplished by a unitary block diagonalization
L. L. Foldy, S. A. Wouthuysen, Phys. Rev. 78 (1950) 29

$$
U^{\dagger}\left[\begin{array}{ll}
h_{L L} & h_{L S} \\
h_{S L} & h_{S S}
\end{array}\right] U=\left[\begin{array}{cc}
h_{++} & 0 \\
0 & h_{--}
\end{array}\right]
$$

- or, equivalently, by elimination of the small components followed by renormalization of the transformed large components.
- The transformation can be expressed as
J.-L. Heully, I. Lindgren, E. Lindroth, A.-M. Mårtensson-Pendrill, Phys. Rev. A 33 (1986) 4426;
W. Kutzelnigg in Relativistic Electronic Structure Theory. Part 1. Fundamentals, (Ed.: P. Schwerdtfeger), Elsevier, Amsterdam, 2002, p. 66
$U=W_{1} W_{2} ; \quad W_{1}=\left[\begin{array}{cc}1 & -R^{\dagger} \\ R & 1\end{array}\right] ; \quad W_{2}=\left[\begin{array}{cc}\Omega_{+} & 0 \\ 0 & \Omega_{-}\end{array}\right] ; \quad \begin{array}{ll}\Omega_{+} & =\left(1+R^{\dagger} R\right)^{-1 / 2} \\ \Omega_{-} & =\left(1+R R^{\dagger}\right)^{-1 / 2}\end{array}$

Decoupling transformation

- We have seen that the decoupling transformation is given by

$$
U=W_{1} W_{2}=\left[\begin{array}{cc}
\Omega_{+} & -R^{\dagger} \Omega_{-} \\
R \Omega_{+} & \Omega_{-}
\end{array}\right]
$$

Decoupling transformation

- We have seen that the decoupling transformation is given by

$$
U=W_{1} W_{2}=\left[\begin{array}{cc}
\Omega_{+} & -R^{\dagger} \Omega_{-} \\
R \Omega_{+} & \Omega_{-}
\end{array}\right]
$$

- The identification of the operator R becomes clear when considering the effect of the Foldy-Wouthuysen transformation on the orbitals

$$
\widehat{U}^{\dagger}\left[\begin{array}{c}
\psi^{L} \\
\psi^{s}
\end{array}\right]=\left[\begin{array}{c}
\Omega_{+}\left(\psi^{L}+R^{\dagger} \psi^{s}\right) \\
\Omega_{-}\left(\psi^{s}-R \psi^{L}\right)
\end{array}\right]
$$

Decoupling transformation

- We have seen that the decoupling transformation is given by

$$
U=W_{1} W_{2}=\left[\begin{array}{cc}
\Omega_{+} & -R^{\dagger} \Omega_{-} \\
R \Omega_{+} & \Omega_{-}
\end{array}\right]
$$

- The identification of the operator R becomes clear when considering the effect of the Foldy-Wouthuysen transformation on the orbitals

$$
\widehat{U}^{\dagger}\left[\begin{array}{c}
\psi^{L} \\
\psi^{s}
\end{array}\right]=\left[\begin{array}{c}
\Omega_{+}\left(\psi^{L}+R^{\dagger} \psi^{S}\right) \\
\Omega_{-}\left(\psi^{s}-R \psi^{L}\right)
\end{array}\right]
$$

- For the positive energy solutions we want the lower component to be zero, thus implying

$$
\psi_{+}^{S}=R \psi_{+}^{L}
$$

Decoupling transformation

- We have seen that the decoupling transformation is given by

$$
U=W_{1} W_{2}=\left[\begin{array}{cc}
\Omega_{+} & -R^{\dagger} \Omega_{-} \\
R \Omega_{+} & \Omega_{-}
\end{array}\right]
$$

- The identification of the operator R becomes clear when considering the effect of the Foldy-Wouthuysen transformation on the orbitals

$$
\widehat{U}^{\dagger}\left[\begin{array}{c}
\psi^{L} \\
\psi^{s}
\end{array}\right]=\left[\begin{array}{c}
\Omega_{+}\left(\psi^{L}+R^{\dagger} \psi^{S}\right) \\
\Omega_{-}\left(\psi^{s}-R \psi^{L}\right)
\end{array}\right]
$$

- For the positive energy solutions we want the lower component to be zero, thus implying

$$
\psi_{+}^{S}=R \psi_{+}^{L}
$$

- The 2-component positive-energy solutions take the form

$$
\psi_{+}=\frac{1}{\sqrt{1+R^{\dagger} R}}\left(\psi^{L}+R^{\dagger} \psi^{s}\right)=\frac{1}{\sqrt{1+R^{\dagger} R}}\left(\psi^{L}+R^{\dagger} R \psi^{L}\right)=\sqrt{1+R^{\dagger} R} \psi^{L}
$$

Approximate 2-component relativistic Hamiltonians in one step

- The exact decoupling requires in principle to solve the Dirac equation

$$
R=\left(2 m c^{2}-V+E\right)^{-1} c(\sigma \cdot \mathbf{p})
$$

Approximate 2-component relativistic Hamiltonians in one step

- The exact decoupling requires in principle to solve the Dirac equation

$$
R=\left(2 m c^{2}-V+E\right)^{-1} c(\boldsymbol{\sigma} \cdot \mathbf{p})
$$

- One-step procedures:

Approximate 2-component relativistic Hamiltonians in one step

- The exact decoupling requires in principle to solve the Dirac equation

$$
R=\left(2 m c^{2}-V+E\right)^{-1} c(\boldsymbol{\sigma} \cdot \mathbf{p})
$$

- One-step procedures:
- Using the approximate decoupling

$$
R=\frac{1}{2 m c}\left[1+\frac{E-V}{2 m c^{2}}\right]^{-1}(\boldsymbol{\sigma} \cdot \mathbf{p}) \sim \frac{1}{2 m c}(\boldsymbol{\sigma} \cdot \mathbf{p})
$$

and retaining terms only to $O\left(c^{-2}\right)$ gives the Pauli Hamiltonian.

Approximate 2-component relativistic Hamiltonians in one step

- The exact decoupling requires in principle to solve the Dirac equation

$$
R=\left(2 m c^{2}-V+E\right)^{-1} c(\sigma \cdot \mathbf{p})
$$

- One-step procedures:
- Using the approximate decoupling

$$
R=\frac{1}{2 m c}\left[1+\frac{E-V}{2 m c^{2}}\right]^{-1}(\boldsymbol{\sigma} \cdot \mathbf{p}) \sim \frac{1}{2 m c}(\boldsymbol{\sigma} \cdot \mathbf{p})
$$

and retaining terms only to $O\left(c^{-2}\right)$ gives the Pauli Hamiltonian.

- Using the approximate decoupling (regular approximation)

$$
R=\frac{c}{2 m c^{2}-V}\left[1+\frac{E}{2 m c^{2}-V}\right]^{-1}(\sigma \cdot \mathbf{p}) \sim \frac{c}{2 m c^{2}-V}(\sigma \cdot \mathbf{p})
$$

without/with renormalization gives the ZORA/IORA Hamiltonians.

Pauli Hamiltonian

- The Pauli Hamiltonian is based on an approximative decoupling of the large and small components

$$
R=\left(2 m c^{2}-V+E\right)^{-1} c(\boldsymbol{\sigma} \cdot \mathbf{p})=\frac{1}{2 m c}\left[1+\frac{E-V}{2 m c^{2}}\right]^{-1}(\boldsymbol{\sigma} \cdot \mathbf{p}) \sim \frac{1}{2 m c}(\sigma \cdot \mathbf{p})
$$

Pauli Hamiltonian

- The Pauli Hamiltonian is based on an approximative decoupling of the large and small components

$$
R=\left(2 m c^{2}-V+E\right)^{-1} c(\boldsymbol{\sigma} \cdot \mathbf{p})=\frac{1}{2 m c}\left[1+\frac{E-V}{2 m c^{2}}\right]^{-1}(\boldsymbol{\sigma} \cdot \mathbf{p}) \sim \frac{1}{2 m c}(\boldsymbol{\sigma} \cdot \mathbf{p})
$$

- Applying the unitary transformation and retaining terms only to $O\left(c^{-2}\right)$ gives the Pauli Hamiltonian

$$
\hat{h}^{\text {Pauli }}=V+T \underbrace{-\frac{p^{4}}{8 m^{3} c^{2}}}_{\text {mass-velocity }} \underbrace{+\frac{1}{8 m^{2} c^{2}}\left(\nabla^{2} V\right)}_{\text {Darwin }} \underbrace{\frac{1}{4 m^{2} c^{2}} \boldsymbol{\sigma} \cdot[(\nabla V) \times \mathbf{p}]}_{\text {spin-orbit }}
$$

Pauli Hamiltonian

- The Pauli Hamiltonian is based on an approximative decoupling of the large and small components

$$
R=\left(2 m c^{2}-V+E\right)^{-1} c(\boldsymbol{\sigma} \cdot \mathbf{p})=\frac{1}{2 m c}\left[1+\frac{E-V}{2 m c^{2}}\right]^{-1}(\sigma \cdot \mathbf{p}) \sim \frac{1}{2 m c}(\boldsymbol{\sigma} \cdot \mathbf{p})
$$

- Applying the unitary transformation and retaining terms only to $O\left(c^{-2}\right)$ gives the Pauli Hamiltonian

$$
\hat{h}^{\text {Pauli }}=V+T \underbrace{-\frac{p^{4}}{8 m^{3} c^{2}}}_{\text {mass-velocity }} \underbrace{+\frac{1}{8 m^{2} c^{2}}\left(\nabla^{2} V\right)}_{\text {Darwin }} \underbrace{\frac{1}{4 m^{2} c^{2}} \boldsymbol{\sigma} \cdot[(\nabla V) \times \mathbf{p}]}_{\text {spin-orbit }}
$$

- Let us investigate the physics it contains !

Mass-velocity term

- Relativistic mass correction

$$
E=m c^{2} \sqrt{1+\frac{p^{2}}{m^{2} c^{2}}}=\underbrace{m c^{2}}_{\text {rest mass }}+\underbrace{\frac{p^{2}}{2 m}-\frac{p^{4}}{8 m^{3} c^{4}}+\ldots}_{\text {kinetic energy }}
$$

Mass-velocity term

- Relativistic mass correction

$$
E=m c^{2} \sqrt{1+\frac{p^{2}}{m^{2} c^{2}}}=\underbrace{m c^{2}}_{\text {rest mass }}+\underbrace{\frac{p^{2}}{2 m}-\frac{p^{4}}{8 m^{3} c^{4}}+\ldots}_{\text {kinetic energy }}
$$

- Problem: The mass-velocity term has no lower bound.

Mass-velocity term

- Relativistic mass correction

$$
E=m c^{2} \sqrt{1+\frac{p^{2}}{m^{2} c^{2}}}=\underbrace{m c^{2}}_{\text {rest mass }}+\underbrace{\frac{p^{2}}{2 m}-\frac{p^{4}}{8 m^{3} c^{4}}+\ldots}_{\text {kinetic energy }}
$$

- Problem: The mass-velocity term has no lower bound.
- The Pauli-Hamiltonian can not be used in variational calculations.

Darwin term

$$
\hat{h}^{\text {Darwin }}=\frac{1}{8 m^{2} c^{2}}\left(\nabla^{2} V\right)=\frac{-e}{8 m^{2} c^{2}}\left(\nabla^{2} \phi\right)
$$

Darwin term

$$
\hat{h}^{\text {Darwin }}=\frac{1}{8 m^{2} c^{2}}\left(\nabla^{2} V\right)=\frac{-e}{8 m^{2} c^{2}}\left(\nabla^{2} \phi\right)
$$

- The origin of the Darwin term is Zitterbewegung, an oscillatory motion of the electron.

Darwin term

$$
\hat{h}^{\text {Darwin }}=\frac{1}{8 m^{2} c^{2}}\left(\nabla^{2} V\right)=\frac{-e}{8 m^{2} c^{2}}\left(\nabla^{2} \phi\right)
$$

- The origin of the Darwin term is Zitterbewegung, an oscillatory motion of the electron.
- Assume that the electron has a rapid oscillatory motion $\boldsymbol{\delta}$ about the average position \mathbf{r}.

Darwin term

$$
\hat{h}^{\text {Darwin }}=\frac{1}{8 m^{2} c^{2}}\left(\nabla^{2} V\right)=\frac{-e}{8 m^{2} c^{2}}\left(\nabla^{2} \phi\right)
$$

- The origin of the Darwin term is Zitterbewegung, an oscillatory motion of the electron.
- Assume that the electron has a rapid oscillatory motion $\boldsymbol{\delta}$ about the average position \mathbf{r}.
- The instantaneous Coulomb interaction is modified

$$
-e \phi(\mathbf{r}) \quad \rightarrow \quad-e \phi(\mathbf{r}+\boldsymbol{\delta})
$$

Darwin term

$$
\hat{h}^{\text {Darwin }}=\frac{1}{8 m^{2} c^{2}}\left(\nabla^{2} V\right)=\frac{-e}{8 m^{2} c^{2}}\left(\nabla^{2} \phi\right)
$$

- The origin of the Darwin term is Zitterbewegung, an oscillatory motion of the electron.
- Assume that the electron has a rapid oscillatory motion $\boldsymbol{\delta}$ about the average position \mathbf{r}.
- The instantaneous Coulomb interaction is modified

$$
-e \phi(\mathbf{r}) \quad \rightarrow \quad-e \phi(\mathbf{r}+\boldsymbol{\delta})
$$

- We perform a Taylor expansion

$$
\phi(\mathbf{r}+\boldsymbol{\delta})=\phi(\mathbf{r})+(\boldsymbol{\delta} \cdot \nabla) \phi(\mathbf{r})+\frac{1}{2}(\boldsymbol{\delta} \cdot \nabla)^{2} \phi(\mathbf{r})+\ldots
$$

Darwin term cont'd

- We consider the time average of the interaction

$$
\begin{aligned}
-e\langle\phi(\mathbf{r}+\boldsymbol{\delta})\rangle_{T} & =-e \phi(\mathbf{r})-e\langle(\boldsymbol{\delta} \cdot \boldsymbol{\nabla})\rangle_{T} \phi(\mathbf{r})-\frac{1}{2} e\left\langle(\boldsymbol{\delta} \cdot \boldsymbol{\nabla})^{2}\right\rangle_{T} \phi(\mathbf{r})+\ldots \\
& =-e \phi(\mathbf{r})-e \frac{\left\langle\delta^{2}\right\rangle_{T}}{6} \nabla^{2} \phi(\mathbf{r})+
\end{aligned}
$$

Darwin term cont'd

- We consider the time average of the interaction

$$
\begin{aligned}
-e\langle\phi(\mathbf{r}+\boldsymbol{\delta})\rangle_{T} & =-e \phi(\mathbf{r})-e\langle(\boldsymbol{\delta} \cdot \boldsymbol{\nabla})\rangle_{T} \phi(\mathbf{r})-\frac{1}{2} e\left\langle(\boldsymbol{\delta} \cdot \nabla)^{2}\right\rangle_{T} \phi(\mathbf{r})+\ldots \\
& =-e \phi(\mathbf{r})-e \frac{\left\langle\delta^{2}\right\rangle_{T}}{6} \nabla^{2} \phi(\mathbf{r})+
\end{aligned}
$$

- We make the identification

$$
\left\langle\delta^{2}\right\rangle_{T}=\frac{3}{4 m^{2} c^{2}} ; \quad \Rightarrow \delta_{x}=\delta_{y}=\delta_{z}=\frac{1}{2 m c}
$$

Darwin term cont'd

- We consider the time average of the interaction

$$
\begin{aligned}
-e\langle\phi(\mathbf{r}+\boldsymbol{\delta})\rangle_{T} & =-e \phi(\mathbf{r})-e\langle(\boldsymbol{\delta} \cdot \boldsymbol{\nabla})\rangle_{T} \phi(\mathbf{r})-\frac{1}{2} e\left\langle(\boldsymbol{\delta} \cdot \boldsymbol{\nabla})^{2}\right\rangle_{T} \phi(\mathbf{r})+\ldots \\
& =-e \phi(\mathbf{r})-e \frac{\left\langle\delta^{2}\right\rangle_{T}}{6} \nabla^{2} \phi(\mathbf{r})+
\end{aligned}
$$

- We make the identification

$$
\left\langle\delta^{2}\right\rangle_{T}=\frac{3}{4 m^{2} c^{2}} ; \quad \Rightarrow \delta_{x}=\delta_{y}=\delta_{z}=\frac{1}{2 m c}
$$

- which gives the Darwin term

$$
\hat{h}^{\text {Darwin }}=\frac{-e}{8 m^{2} c^{2}}\left(\nabla^{2} \phi\right)
$$

What is Zitterbewegung ?

- One interpretation is that in the vicinity of an electron its field is sufficiently strong to allow the creation of a electron-positron pair.

What is Zitterbewegung ?

- One interpretation is that in the vicinity of an electron its field is sufficiently strong to allow the creation of a electron-positron pair.
- The positron annihilates the original electron and the "new" electron takes over.

What is Zitterbewegung ?

What is Zitterbewegung ?

- One interpretation is that in the vicinity of an electron its field is sufficiently strong to allow the creation of a electron-positron pair.
- The positron annihilates the original electron and the "new" electron takes over.
- Consider the energy-time uncertainity relation

$$
\Delta E \Delta t \geq 1
$$

- The creation of an electron-positron pair requires at least $2 m c^{2}$ from which we obtain

$$
\Delta t \approx \frac{1}{2 m c^{2}}
$$

What is Zitterbewegung ?

- One interpretation is that in the vicinity of an electron its field is sufficiently strong to allow the creation of a electron-positron pair.
- The positron annihilates the original electron and the "new" electron takes over.
- Consider the energy-time uncertainity relation

$$
\Delta E \Delta t \geq 1
$$

- The creation of an electron-positron pair requires at least $2 m c^{2}$ from which we obtain

$$
\Delta t \approx \frac{1}{2 m c^{2}}
$$

- In this time a particle can move a maximum distance of

$$
\Delta x \approx \frac{1}{2 m c}
$$

Spin-orbit interaction

- Spin-orbit interaction term of the Pauli Hamiltonian

$$
h^{\text {so }}=\frac{1}{2 m^{2} c^{2}} \mathbf{s} \cdot[(\nabla V) \times \mathbf{p}] \quad \begin{gathered}
V \\
=-\frac{Z}{r}
\end{gathered} \frac{Z}{2 m^{2} c^{2} r^{3}} \mathbf{s} \cdot 1
$$

Spin-orbit interaction

- Spin-orbit interaction term of the Pauli Hamiltonian

$$
h^{\text {so }}=\frac{1}{2 m^{2} c^{2}} \mathbf{s} \cdot[(\nabla V) \times \mathbf{p}] \quad \begin{gathered}
V \\
\rightarrow
\end{gathered}
$$

- Digression: Dirac-Coulomb Hamiltonian

$$
\hat{H}=V_{N N}+\sum_{i}\left\{\beta_{i} m c^{2}+c\left(\boldsymbol{\alpha}_{i} \cdot \mathbf{p}_{i}\right)+V_{e N}(i)\right\}+\frac{1}{2} \sum_{i \neq j} \frac{1}{r_{i j}}
$$

Spin-orbit interaction

- Spin-orbit interaction term of the Pauli Hamiltonian

$$
h^{\text {so }}=\frac{1}{2 m^{2} c^{2}} \mathbf{s} \cdot[(\nabla V) \times \mathbf{p}] \quad \begin{gathered}
V \\
\rightarrow
\end{gathered}
$$

- Digression: Dirac-Coulomb Hamiltonian

$$
\hat{H}=V_{N N}+\sum_{i}\left\{\beta_{i} m c^{2}+c\left(\boldsymbol{\alpha}_{i} \cdot \mathbf{p}_{i}\right)+V_{e N}(i)\right\}+\frac{1}{2} \sum_{i \neq j} \frac{1}{r_{i j}}
$$

- Where is the spin-orbit interaction operator ($\sim \mathbf{s} \cdot \mathbf{I}$) ???

Spin-orbit interaction

- Spin-orbit interaction term of the Pauli Hamiltonian

$$
h^{\text {so }}=\frac{1}{2 m^{2} c^{2}} \mathbf{s} \cdot[(\nabla V) \times \mathbf{p}] \quad \begin{gathered}
V=-\frac{z}{r} \\
\rightarrow
\end{gathered} \frac{Z}{2 m^{2} c^{2} r^{3}} \mathbf{s} \cdot 1
$$

- Digression: Dirac-Coulomb Hamiltonian

$$
\hat{H}=V_{N N}+\sum_{i}\left\{\beta_{i} m c^{2}+c\left(\boldsymbol{\alpha}_{i} \cdot \mathbf{p}_{i}\right)+V_{e N}(i)\right\}+\frac{1}{2} \sum_{i \neq j} \frac{1}{r_{i j}}
$$

- Where is the spin-orbit interaction operator ($\sim \mathbf{s} \cdot \mathbf{I}$) ???
- There is no explicit operator since the electronic Hamiltonian is formulated in the nuclear frame.

Spin-orbit interaction is magnetic induction

By insisting on Coulomb gauge $\phi=\frac{Z}{r}$ in all reference frames.

Spin-orbit interaction with other electrons

By insisting on Coulomb gauge $\phi=\frac{1}{r_{12}}$ in all reference frames.
Spin-same-orbit (SSO) interaction arises from the Coulomb term.

Spin-orbit interaction with other electrons

By insisting on Coulomb gauge $\phi=\frac{1}{r_{12}}$ in all reference frames.
Spin-other-orbit (SOO) interaction arises from the Gaunt term.
The spin-orbit interaction with nuclei is of type spin-own orbit in the Born-Oppenheimer approximation.

The ZORA Hamiltonian

- The ZORA Hamiltonian is based on an approximative decoupling of the large and small components

$$
R=\frac{c}{2 m c^{2}-V}\left[1+\frac{E}{2 m c^{2}-V}\right]^{-1}(\boldsymbol{\sigma} \cdot \mathbf{p}) \sim \frac{c}{2 m c^{2}-V}(\boldsymbol{\sigma} \cdot \mathbf{p})
$$

The ZORA Hamiltonian

- The ZORA Hamiltonian is based on an approximative decoupling of the large and small components

$$
R=\frac{c}{2 m c^{2}-V}\left[1+\frac{E}{2 m c^{2}-V}\right]^{-1}(\boldsymbol{\sigma} \cdot \mathbf{p}) \sim \frac{c}{2 m c^{2}-V}(\boldsymbol{\sigma} \cdot \mathbf{p})
$$

- Zeroth-Order Regular Approximation (ZORA) [renormalization terms ignored]:

$$
\hat{h}^{\mathrm{ZORA}}=V+\frac{1}{2 m}(\boldsymbol{\sigma} \cdot \mathbf{p}) \frac{2 m c^{2}}{2 m c^{2}-V}(\boldsymbol{\sigma} \cdot \mathbf{p})
$$

The ZORA Hamiltonian

- The ZORA Hamiltonian is based on an approximative decoupling of the large and small components

$$
R=\frac{c}{2 m c^{2}-V}\left[1+\frac{E}{2 m c^{2}-V}\right]^{-1}(\boldsymbol{\sigma} \cdot \mathbf{p}) \sim \frac{c}{2 m c^{2}-V}(\boldsymbol{\sigma} \cdot \mathbf{p})
$$

- Zeroth-Order Regular Approximation (ZORA) [renormalization terms ignored]:

$$
\hat{h}^{\mathrm{ZORA}}=V+\frac{1}{2 m}(\boldsymbol{\sigma} \cdot \mathbf{p}) \frac{2 m c^{2}}{2 m c^{2}-V}(\boldsymbol{\sigma} \cdot \mathbf{p})
$$

- The second term can be thought of as an effective kinetic energy operator that goes to the non-relativistic one when $V \rightarrow 0$.

The ZORA Hamiltonian

- The ZORA Hamiltonian is based on an approximative decoupling of the large and small components

$$
R=\frac{c}{2 m c^{2}-V}\left[1+\frac{E}{2 m c^{2}-V}\right]^{-1}(\boldsymbol{\sigma} \cdot \mathbf{p}) \sim \frac{c}{2 m c^{2}-V}(\boldsymbol{\sigma} \cdot \mathbf{p})
$$

- Zeroth-Order Regular Approximation (ZORA) [renormalization terms ignored]:

$$
\hat{h}^{\mathrm{ZORA}}=V+\frac{1}{2 m}(\boldsymbol{\sigma} \cdot \mathbf{p}) \frac{2 m c^{2}}{2 m c^{2}-V}(\boldsymbol{\sigma} \cdot \mathbf{p})
$$

- The second term can be thought of as an effective kinetic energy operator that goes to the non-relativistic one when $V \rightarrow 0$.
- Electric gauge-dependence: $(V \rightarrow V+\Delta \Rightarrow E \rightarrow E+\Delta)$

The ZORA Hamiltonian

- The ZORA Hamiltonian is based on an approximative decoupling of the large and small components

$$
R=\frac{c}{2 m c^{2}-V}\left[1+\frac{E}{2 m c^{2}-V}\right]^{-1}(\boldsymbol{\sigma} \cdot \mathbf{p}) \sim \frac{c}{2 m c^{2}-V}(\sigma \cdot \mathbf{p})
$$

- Zeroth-Order Regular Approximation (ZORA) [renormalization terms ignored]:

$$
\hat{h}^{\mathrm{ZORA}}=V+\frac{1}{2 m}(\boldsymbol{\sigma} \cdot \mathbf{p}) \frac{2 m c^{2}}{2 m c^{2}-V}(\boldsymbol{\sigma} \cdot \mathbf{p})
$$

- The second term can be thought of as an effective kinetic energy operator that goes to the non-relativistic one when $V \rightarrow 0$.
- Electric gauge-dependence: $(V \rightarrow V+\Delta \Rightarrow E \rightarrow E+\Delta)$
- Usually fixed by approximating the potential in the denominator by a superposition of atomic potentials.

The ZORA Hamiltonian

Missing renormalization

- We are solving

$$
\hat{h}^{\mathrm{ZORA}} \varphi_{p}=\varepsilon_{p}^{\mathrm{ZORA}} \varphi_{p}
$$

The ZORA Hamiltonian

Missing renormalization

- We are solving

$$
\hat{h}^{\mathrm{ZORA}} \varphi_{p}=\varepsilon_{p}^{\mathrm{ZORA}} \varphi_{p}
$$

- ..but should be solving
(NESC: normalized elimination of small components)

$$
\hat{h}^{\mathrm{ZORA}} \phi_{p}=\left[1+\hat{R}^{\dagger} \hat{R}\right] \varepsilon_{p}^{\mathrm{IORA}} \phi_{p}
$$

The ZORA Hamiltonian

Missing renormalization

- We are solving

$$
\hat{h}^{\mathrm{ZORA}} \varphi_{p}=\varepsilon_{p}^{\mathrm{ZORA}} \varphi_{p}
$$

- ..but should be solving
(NESC: normalized elimination of small components)

$$
\hat{h}^{\mathrm{ZORA}} \phi_{p}=\left[1+\hat{R}^{\dagger} \hat{R}\right] \varepsilon_{p}^{\mathrm{IORA}} \phi_{p}
$$

- We introduce the approximate equation

$$
\hat{h}^{\mathrm{ZORA}} \varphi_{p}=\left[1+\left\langle\varphi_{p}\right| \hat{R}^{\dagger} \hat{R}\left|\varphi_{p}\right\rangle\right] \tilde{\varepsilon}_{p}^{\mathrm{ORA}} \varphi_{p}
$$

The ZORA Hamiltonian

Missing renormalization

- We are solving

$$
\hat{h}^{\mathrm{ZORA}} \varphi_{p}=\varepsilon_{p}^{\mathrm{ZORA}} \varphi_{p}
$$

- ..but should be solving
(NESC: normalized elimination of small components)

$$
\hat{h}^{\mathrm{ZORA}} \phi_{p}=\left[1+\hat{R}^{\dagger} \hat{R}\right] \varepsilon_{p}^{\mathrm{IORA}} \phi_{p}
$$

- We introduce the approximate equation

$$
\hat{h}^{\mathrm{ZORA}} \varphi_{p}=\left[1+\left\langle\varphi_{p}\right| \hat{R}^{\dagger} \hat{R}\left|\varphi_{p}\right\rangle\right] \tilde{\varepsilon}_{p}^{\mathrm{ORA}} \varphi_{p}
$$

- This leads to the scaled ZORA approach (only correcting eigenvalues)

$$
\varepsilon_{p}^{\mathrm{IORA}} \approx \varepsilon_{p}^{\mathrm{scZORA}}=\frac{\varepsilon_{p}^{\mathrm{ZORA}}}{1+\left\langle\varphi_{p}\right| \hat{R}^{\dagger} \hat{R}\left|\varphi_{p}\right\rangle}
$$

The ZORA Hamiltonian

Missing renormalization

- We are solving

$$
\hat{h}^{\mathrm{ZORA}} \varphi_{p}=\varepsilon_{p}^{\mathrm{ZORA}} \varphi_{p}
$$

- ..but should be solving
(NESC: normalized elimination of small components)

$$
\hat{h}^{\mathrm{ZORA}} \phi_{p}=\left[1+\hat{R}^{\dagger} \hat{R}\right] \varepsilon_{p}^{\mathrm{IORA}} \phi_{p}
$$

- We introduce the approximate equation

$$
\hat{h}^{\mathrm{ZORA}} \varphi_{p}=\left[1+\left\langle\varphi_{p}\right| \hat{R}^{\dagger} \hat{R}\left|\varphi_{p}\right\rangle\right] \tilde{\varepsilon}_{p}^{\mathrm{ORA}} \varphi_{p}
$$

- This leads to the scaled ZORA approach (only correcting eigenvalues)

$$
\varepsilon_{p}^{\mathrm{IORA}} \approx \varepsilon_{p}^{\mathrm{scZORA}}=\frac{\varepsilon_{p}^{\mathrm{ZORA}}}{1+\left\langle\varphi_{p}\right| \hat{R}^{\dagger} \hat{R}\left|\varphi_{p}\right\rangle}
$$

- For one-electron systems the Dirac eigenvalues are reproduced.

Approximate 2-component relativistic Hamiltonians in two steps

- Two-step procedures:

Approximate 2-component relativistic Hamiltonians in two steps

- Two-step procedures:
- 1a) Using the exact free-particle decoupling

$$
R=\frac{c(\boldsymbol{\sigma} \cdot \mathbf{p})}{E_{p}+m c^{2}} \sim O\left(c^{-1}\right) ; \quad E_{p}=\sqrt{m^{2} c^{4}+c^{2} p^{2}}
$$

provides regularized and variationally stable Hamiltonians,

Approximate 2-component relativistic Hamiltonians in two steps

- Two-step procedures:
- 1a) Using the exact free-particle decoupling

$$
R=\frac{c(\boldsymbol{\sigma} \cdot \mathbf{p})}{E_{p}+m c^{2}} \sim O\left(c^{-1}\right) ; \quad E_{p}=\sqrt{m^{2} c^{4}+c^{2} p^{2}}
$$

provides regularized and variationally stable Hamiltonians,

* but not exact decoupling

$$
\begin{aligned}
& \hat{h} \rightarrow\left[\begin{array}{cc}
E_{p}-m c^{2} & 0 \\
0 & -E_{p}-3 m c^{2}
\end{array}\right]+\left[\begin{array}{cc}
A[V+R V R] A & A[R, V] A \\
-A[R, V] A & A[V+R V R] A
\end{array}\right] \\
& A=\frac{1}{\sqrt{1+R^{\dagger} R}}=\sqrt{\frac{E_{p}+m c^{2}}{2 E_{p}}} \sim O\left(c^{0}\right)
\end{aligned}
$$

Approximate 2-component relativistic Hamiltonians in two steps

- Two-step procedures:
- 1a) Using the exact free-particle decoupling

$$
R=\frac{c(\boldsymbol{\sigma} \cdot \mathbf{p})}{E_{p}+m c^{2}} \sim O\left(c^{-1}\right) ; \quad E_{p}=\sqrt{m^{2} c^{4}+c^{2} p^{2}}
$$

provides regularized and variationally stable Hamiltonians,

* but not exact decoupling

$$
\begin{aligned}
\hat{h} & \rightarrow\left[\begin{array}{cc}
E_{p}-m c^{2} & 0 \\
0 & -E_{p}-3 m c^{2}
\end{array}\right]+\left[\begin{array}{cc}
A[V+R V R] A & A[R, V] A \\
-A[R, V] A & A[V+R V R] A
\end{array}\right] \\
A & =\frac{1}{\sqrt{1+R^{\dagger} R}}=\sqrt{\frac{E_{p}+m c^{2}}{2 E_{p}}} \sim O\left(c^{0}\right)
\end{aligned}
$$

- 2a) Subsequent decoupling transformations in orders of the potential defines Douglas-Kroll-Hess (DKH) Hamiltonians to given order.

Approximate 2-component relativistic Hamiltonians in two steps

- Two-step procedures:
- 1a) Using the exact free-particle decoupling

$$
R=\frac{c(\boldsymbol{\sigma} \cdot \mathbf{p})}{E_{p}+m c^{2}} \sim O\left(c^{-1}\right) ; \quad E_{p}=\sqrt{m^{2} c^{4}+c^{2} p^{2}}
$$

provides regularized and variationally stable Hamiltonians,

* but not exact decoupling

$$
\begin{aligned}
\hat{h} & \rightarrow\left[\begin{array}{cc}
E_{p}-m c^{2} & 0 \\
0 & -E_{p}-3 m c^{2}
\end{array}\right]+\left[\begin{array}{cc}
A[V+R V R] A & A[R, V] A \\
-A[R, V] A & A[V+R V R] A
\end{array}\right] \\
A & =\frac{1}{\sqrt{1+R^{\dagger} R}}=\sqrt{\frac{E_{p}+m c^{2}}{2 E_{p}}} \sim O\left(c^{0}\right)
\end{aligned}
$$

- 2a) Subsequent decoupling transformations in orders of the potential defines Douglas-Kroll-Hess (DKH) Hamiltonians to given order.
\star DKH1 means no further transformation, DKH2 is the standard form.

Approximate 2-component relativistic Hamiltonians in two steps

- Two-step procedures:
- 1a) Using the exact free-particle decoupling

$$
R=\frac{c(\boldsymbol{\sigma} \cdot \mathbf{p})}{E_{p}+m c^{2}} \sim O\left(c^{-1}\right) ; \quad E_{p}=\sqrt{m^{2} c^{4}+c^{2} p^{2}}
$$

provides regularized and variationally stable Hamiltonians,

* but not exact decoupling

$$
\begin{aligned}
& \hat{h} \rightarrow\left[\begin{array}{cc}
E_{p}-m c^{2} & 0 \\
0 & -E_{p}-3 m c^{2}
\end{array}\right]+\left[\begin{array}{cc}
A[V+R V R] A & A[R, V] A \\
-A[R, V] A & A[V+R V R] A
\end{array}\right] \\
& A=\frac{1}{\sqrt{1+R^{\dagger} R}}=\sqrt{\frac{E_{p}+m c^{2}}{2 E_{p}}} \sim O\left(c^{0}\right)
\end{aligned}
$$

- 2a) Subsequent decoupling transformations in orders of the potential defines Douglas-Kroll-Hess (DKH) Hamiltonians to given order.
* DKH1 means no further transformation, DKH2 is the standard form.
- 2b) Iterating the coupling equation of the free-particle transformed Hamiltonian to obtain the coupling correct through some odd order $2 k-1$ in c^{-1} and then perform a single unitary transformation defines the Barysz, Sadlej and Snijders (BSS) Hamiltonian to order $2 k$.

Exact 2-component (X2C) Hamiltonians

M. Iliaš, H. J. Aa. Jensen, V. Kellö, B. O. Roos and M. Urban, Chem. Phys. Lett. 408 (2005) 210;
W. Kutzelnigg and W. Liu, J. Chem. Phys. 123 (2005) 241102; M. lliaš and T. Saue, J. Chem. Phys. 126 (2007) 064102

- Two important realizations:

Exact 2-component (X2C) Hamiltonians

M. Iliaš, H. J. Aa. Jensen, V. Kellö, B. O. Roos and M. Urban, Chem. Phys. Lett. 408 (2005) 210;
W. Kutzelnigg and W. Liu, J. Chem. Phys. 123 (2005) 241102; M. Iliaš and T. Saue, J. Chem. Phys. 126 (2007) 064102

- Two important realizations:
- solving the one-electron problem is cheap compared to the many-electron problem

Exact 2-component (X2C) Hamiltonians

M. Iliaš, H. J. Aa. Jensen, V. Kellö, B. O. Roos and M. Urban, Chem. Phys. Lett. 408 (2005) 210;
W. Kutzelnigg and W. Liu, J. Chem. Phys. 123 (2005) 241102; M. Iliaš and T. Saue, J. Chem. Phys. 126 (2007) 064102

- Two important realizations:
- solving the one-electron problem is cheap compared to the many-electron problem
- use matrix algebra

Exact 2-component (X2C) Hamiltonians

M. Iliaš, H. J. Aa. Jensen, V. Kellö, B. O. Roos and M. Urban, Chem. Phys. Lett. 408 (2005) 210;
W. Kutzelnigg and W. Liu, J. Chem. Phys. 123 (2005) 241102; M. lliaš and T. Saue, J. Chem. Phys. 126 (2007) 064102

- Two important realizations:
- solving the one-electron problem is cheap compared to the many-electron problem
- use matrix algebra
- ... led to this simple algorithm for exact decoupling:

Exact 2-component (X2C) Hamiltonians

M. Iliaš, H. J. Aa. Jensen, V. Kellö, B. O. Roos and M. Urban, Chem. Phys. Lett. 408 (2005) 210;
W. Kutzelnigg and W. Liu, J. Chem. Phys. 123 (2005) 241102; M. lliaš and T. Saue, J. Chem. Phys. 126 (2007) 064102

- Two important realizations:
- solving the one-electron problem is cheap compared to the many-electron problem
- use matrix algebra
- ... led to this simple algorithm for exact decoupling:
- 1. Solve the Dirac equation on matrix form

Exact 2-component (X2C) Hamiltonians

M. Iliaš, H. J. Aa. Jensen, V. Kellö, B. O. Roos and M. Urban, Chem. Phys. Lett. 408 (2005) 210;
W. Kutzelnigg and W. Liu, J. Chem. Phys. 123 (2005) 241102; M. lliaš and T. Saue, J. Chem. Phys. 126 (2007) 064102

- Two important realizations:
- solving the one-electron problem is cheap compared to the many-electron problem
- use matrix algebra
- ... led to this simple algorithm for exact decoupling:
- 1. Solve the Dirac equation on matrix form
- 2. Extract the coupling R from the solutions

Exact 2-component (X2C) Hamiltonians

M. Iliaš, H. J. Aa. Jensen, V. Kellö, B. O. Roos and M. Urban, Chem. Phys. Lett. 408 (2005) 210;
W. Kutzelnigg and W. Liu, J. Chem. Phys. 123 (2005) 241102; M. Iliaš and T. Saue, J. Chem. Phys. 126 (2007) 064102

- Two important realizations:
- solving the one-electron problem is cheap compared to the many-electron problem
- use matrix algebra
- ... led to this simple algorithm for exact decoupling:
- 1. Solve the Dirac equation on matrix form
- 2. Extract the coupling R from the solutions
- 3. Construct the transformation matrix U, next $h^{X 2 C}$

Exact 2-component (X2C) Hamiltonians

M. Iliaš, H. J. Aa. Jensen, V. Kellö, B. O. Roos and M. Urban, Chem. Phys. Lett. 408 (2005) 210;
W. Kutzelnigg and W. Liu, J. Chem. Phys. 123 (2005) 241102; M. Iliaš and T. Saue, J. Chem. Phys. 126 (2007) 064102

- Two important realizations:
- solving the one-electron problem is cheap compared to the many-electron problem
- use matrix algebra
- ... led to this simple algorithm for exact decoupling:
- 1. Solve the Dirac equation on matrix form
- 2. Extract the coupling R from the solutions
- 3. Construct the transformation matrix U, next $h^{X 2 C}$
- Advantages:

Exact 2-component (X2C) Hamiltonians

M. Iliaš, H. J. Aa. Jensen, V. Kellö, B. O. Roos and M. Urban, Chem. Phys. Lett. 408 (2005) 210;
W. Kutzelnigg and W. Liu, J. Chem. Phys. 123 (2005) 241102; M. lliaš and T. Saue, J. Chem. Phys. 126 (2007) 064102

- Two important realizations:
- solving the one-electron problem is cheap compared to the many-electron problem
- use matrix algebra
- ... led to this simple algorithm for exact decoupling:
- 1. Solve the Dirac equation on matrix form
- 2. Extract the coupling R from the solutions
- 3. Construct the transformation matrix U, next $h^{X 2 C}$
- Advantages:
- reproduces exactly the positive-energy spectrum of the Dirac Hamiltonian

Exact 2-component (X2C) Hamiltonians

M. Iliaš, H. J. Aa. Jensen, V. Kellö, B. O. Roos and M. Urban, Chem. Phys. Lett. 408 (2005) 210;
W. Kutzelnigg and W. Liu, J. Chem. Phys. 123 (2005) 241102; M. Iliaš and T. Saue, J. Chem. Phys. 126 (2007) 064102

- Two important realizations:
- solving the one-electron problem is cheap compared to the many-electron problem
- use matrix algebra
- ... led to this simple algorithm for exact decoupling:
- 1. Solve the Dirac equation on matrix form
- 2. Extract the coupling R from the solutions
- 3. Construct the transformation matrix U, next $h^{X 2 C}$
- Advantages:
- reproduces exactly the positive-energy spectrum of the Dirac Hamiltonian
- all matrix manipulations; no new operators to program

Exact 2-component (X2C) Hamiltonians

M. Iliaš, H. J. Aa. Jensen, V. Kellö, B. O. Roos and M. Urban, Chem. Phys. Lett. 408 (2005) 210;
W. Kutzelnigg and W. Liu, J. Chem. Phys. 123 (2005) 241102; M. Iliaš and T. Saue, J. Chem. Phys. 126 (2007) 064102

- Two important realizations:
- solving the one-electron problem is cheap compared to the many-electron problem
- use matrix algebra
- ... led to this simple algorithm for exact decoupling:
- 1. Solve the Dirac equation on matrix form
- 2. Extract the coupling R from the solutions
- 3. Construct the transformation matrix U, next $h^{X 2 C}$
- Advantages:
- reproduces exactly the positive-energy spectrum of the Dirac Hamiltonian
- all matrix manipulations; no new operators to program
- explicit representation of transformation matrix

Exact 2-component (X2C) Hamiltonians

M. Iliaš, H. J. Aa. Jensen, V. Kellö, B. O. Roos and M. Urban, Chem. Phys. Lett. 408 (2005) 210;
W. Kutzelnigg and W. Liu, J. Chem. Phys. 123 (2005) 241102; M. Iliaš and T. Saue, J. Chem. Phys. 126 (2007) 064102

- Two important realizations:
- solving the one-electron problem is cheap compared to the many-electron problem
- use matrix algebra
- ... led to this simple algorithm for exact decoupling:
- 1. Solve the Dirac equation on matrix form
- 2. Extract the coupling R from the solutions
- 3. Construct the transformation matrix U, next $h^{X 2 C}$
- Advantages:
- reproduces exactly the positive-energy spectrum of the Dirac Hamiltonian
- all matrix manipulations; no new operators to program
- explicit representation of transformation matrix
* any property operator can be transformed on the fly

Exact 2-component (X2C) Hamiltonians

M. Iliaš, H. J. Aa. Jensen, V. Kellö, B. O. Roos and M. Urban, Chem. Phys. Lett. 408 (2005) 210;
W. Kutzelnigg and W. Liu, J. Chem. Phys. 123 (2005) 241102; M. Iliaš and T. Saue, J. Chem. Phys. 126 (2007) 064102

- Two important realizations:
- solving the one-electron problem is cheap compared to the many-electron problem
- use matrix algebra
- ... led to this simple algorithm for exact decoupling:
- 1. Solve the Dirac equation on matrix form
- 2. Extract the coupling R from the solutions
- 3. Construct the transformation matrix U, next $h^{X 2 C}$
- Advantages:
- reproduces exactly the positive-energy spectrum of the Dirac Hamiltonian
- all matrix manipulations; no new operators to program
- explicit representation of transformation matrix
* any property operator can be transformed on the fly
* no picture change errors

Picture change errors

[^0]
Picture change errors

- The 2-component Hamiltonian is obtained as

$$
H^{2 c}=\left[U^{\dagger} H^{4 c} U\right]_{++}
$$

[^1]
Picture change errors

- The 2-component Hamiltonian is obtained as

$$
H^{2 c}=\left[U^{\dagger} H^{4 c} U\right]_{++}
$$

- Property operators $\Omega^{4 c}$ must be subjected to the same decoupling transformation as the Hamiltonian, that is

$$
\Omega^{2 c}=\left[U^{\dagger} \Omega^{4 c} U\right]_{++}
$$

[^2]
Picture change errors

- The 2-component Hamiltonian is obtained as

$$
H^{2 c}=\left[U^{\dagger} H^{4 c} U\right]_{++}
$$

- Property operators $\Omega^{4 c}$ must be subjected to the same decoupling transformation as the Hamiltonian, that is

$$
\Omega^{2 c}=\left[U^{\dagger} \Omega^{4 c} U\right]_{++}
$$

- Use of the approximate expression

$$
\Omega^{2 c} \approx\left[\Omega^{4 c}\right]_{L L}
$$

leads to picture change errors

[^3]
Picture change errors

- The 2-component Hamiltonian is obtained as

$$
H^{2 c}=\left[U^{\dagger} H^{4 c} U\right]_{++}
$$

- Property operators $\Omega^{4 c}$ must be subjected to the same decoupling transformation as the Hamiltonian, that is

$$
\Omega^{2 c}=\left[U^{\dagger} \Omega^{4 c} U\right]_{++}
$$

- Use of the approximate expression

$$
\Omega^{2 c} \approx\left[\Omega^{4 c}\right]_{L L}
$$

leads to picture change errors

- may be larger than the relativistic effects !

[^4]
An example: the electron density

$$
\begin{array}{ll}
\rho^{4 c}(\mathbf{P})=-e \sum_{i}\left\langle\psi_{i}^{4 c}\right| \delta(\mathbf{r}-\mathbf{P})\left|\psi_{i}^{4 c}\right\rangle & =-e \sum_{i} \psi_{i}^{4 c \dagger}(\mathbf{P}) \psi_{i}^{4 c}(\mathbf{P}) \\
\rho^{2 c}(\mathbf{P})=-e \sum_{i}\left\langle\psi_{i}^{2 c}\right|\left[U^{\dagger} \delta(\mathbf{r}-\mathbf{P}) U\right]_{++}\left|\psi_{i}^{2 c}\right\rangle & \neq-e \sum_{i} \psi_{i}^{2 c \dagger}(\mathbf{P}) \psi_{i}^{2 c}(\mathbf{P})
\end{array}
$$

$\sum_{i} \psi_{i}^{4 c \dagger} \psi_{i}^{4 c}$ vs. $\sum_{i} \psi_{i}^{2 c \dagger} \psi_{i}^{2 c}$ for the mercury atom

An example: the electron density

$$
\begin{array}{ll}
\rho^{4 c}(\mathbf{P})=-e \sum_{i}\left\langle\psi_{i}^{4 c}\right| \delta(\mathbf{r}-\mathbf{P})\left|\psi_{i}^{4 c}\right\rangle & =-e \sum_{i} \psi_{i}^{4 c \dagger}(\mathbf{P}) \psi_{i}^{4 c}(\mathbf{P}) \\
\rho^{2 c}(\mathbf{P})=-e \sum_{i}\left\langle\psi_{i}^{2 c}\right|\left[U^{\dagger} \delta(\mathbf{r}-\mathbf{P}) U\right]_{++}\left|\psi_{i}^{2 c}\right\rangle & \neq-e \sum_{i} \psi_{i}^{2 c \dagger}(\mathbf{P}) \psi_{i}^{2 c}(\mathbf{P})
\end{array}
$$

$\sum_{i} \psi_{i}^{4 c \dagger} \psi_{i}^{4 c}$ vs. $\sum_{i} \psi_{i}^{2 c \dagger} \psi_{i}^{2 c}$ for the mercury atom

An example: the electron density

- On a "chemical" scale the difference is no longer visible:

An example: the electron density

- On a "chemical" scale the difference is no longer visible:

- However, many molecular properties probe the electron density near nuclei, providing local information with great sensitivity to the chemical environment,

An example: the electron density

- On a "chemical" scale the difference is no longer visible:

- However, many molecular properties probe the electron density near nuclei, providing local information with great sensitivity to the chemical environment,
- for instance electric field gradients at nuclei, NMR parameters, molecular gradients and Mössbauer isomer shifts.

Numerical example: the uranium atom

	DCG	DC	X2C(AMFI)	DKH2	DKH1	ZORA	scZORA
$1 \mathrm{~s}_{1 / 2}$	-4262.599	-4281.813	-4272.178	-4253.946	-4568.402	-4890.081	-4267.639
$2 \mathrm{~s}_{1 / 2}$	-804.292	-806.637	-804.996	-802.931	-840.315	-829.339	-804.400
$2 p_{1 / 2}$	-773.067	-777.035	-775.649	-774.270	-791.143	-799.722	-775.573
$2 p_{3 / 2}$	-633.274	-635.783	-635.010	-635.027	-634.978	-651.542	-634.900
$3 \mathrm{~s}_{1 / 2}$	-206.265	-206.730	-206.350	-205.894	-214.216	-208.368	-206.214
$3 p_{1 / 2}$	-192.463	-193.251	-192.949	-192.624	-196.579	-194.945	-192.940
$3 p_{3 / 2}$	-159.897	-160.378	-160.206	-160.220	-160.067	-161.622	-160.178
$3 d_{3 / 2}$	-138.721	-139.070	-138.997	-139.024	-138.568	-140.214	-138.982
$3 d_{5 / 2}$	-132.183	-132.426	-132.367	-132.393	-131.938	-133.477	-132.350
$4 s_{1 / 2}$	-54.250	-54.355	-54.259	-54.140	-56.332	-54.425	-54.223
$4 p_{1 / 2}$	-48.048	-48.232	-48.161	-48.077	-49.085	-48.334	-48.159
$4 p_{3 / 2}$	-39.454	-39.554	-39.515	-39.522	-39.437	-39.633	-39.508
$4 d_{3 / 2}$	-29.688	-29.744	-29.734	-29.743	-29.590	-29.817	-29.730
$4 d_{5 / 2}$	-28.100	-28.130	-28.123	-28.132	-27.980	-28.197	-28.119
$4 f_{5 / 2}$	-15.207	-15.202	-15.211	-15.220	-15.089	-15.247	-15.210
$4 f_{7 / 2}$	-14.802	-14.786	-14.795	-14.803	-14.676	-14.828	-14.792

Numerical example: the uranium atom

	DCG	DC	X2C(AMFI)	DKH2	DKH1	ZORA	scZORA
$5 s_{1 / 2}$	-12.582	-12.603	-12.582	-12.553	-13.081	-12.587	-12.573
$5 p_{1 / 2}$	-10.098	-10.136	-10.122	-10.103	-10.320	-10.133	-10.122
$5 p_{3 / 2}$	-8.077	-8.095	-8.088	-8.091	-8.049	-8.094	-8.087
$5 d_{3 / 2}$	-4.347	-4.352	-4.353	-4.356	-4.305	-4.356	-4.353
$5 d_{5 / 2}$	-4.040	-4.041	-4.042	-4.045	-3.995	-4.044	-4.041
$5 f_{5 / 2}$	-0.350	-0.346	-0.349	-0.350	-0.321	-0.349	-0.349
$5 f_{7 / 2}$	-0.323	-0.318	-0.321	-0.322	-0.294	-0.321	-0.321
$6 s_{1 / 2}$	-2.135	-2.139	-2.135	-2.130	-2.234	-2.134	-2.133
$6 p_{1 / 2}$	-1.338	-1.344	-1.342	-1.339	-1.371	-1.343	-1.342
$6 p_{3 / 2}$	-0.983	-0.985	-0.984	-0.985	-0.968	-0.984	-0.984
$6 d_{3 / 2}$	-0.193	-0.193	-0.193	-0.194	-0.181	-0.193	-0.193
$6 d_{5 / 2}$	-0.183	-0.183	-0.184	-0.184	-0.173	-0.184	-0.184
$7 \mathrm{~s}_{1 / 2}$	-0.202	-0.202	-0.202	-0.202	-0.211	-0.202	-0.202

The uranium atom: spin-orbit splittings

SO	DCG	DC	X2C(AMFI)	DKH2	DKH1	ZORA	scZORA
2p	139.793	141.252	140.638	139.244	156.165	148.179	140.672
3p	32.565	32.874	32.743	32.404	36.512	33.324	32.762
3d	6.538	6.644	6.630	6.631	6.631	6.737	6.632
4p	8.594	8.678	8.645	8.555	9.648	8.701	8.651
4d	1.588	1.614	1.611	1.611	1.611	1.620	1.612
4 f	2.021	2.041	2.034	2.012	2.271	2.038	2.035
5p	0.307	0.312	0.311	0.311	0.310	0.312	0.312
5d	0.307	0.312	0.311	0.311	0.310	0.312	0.312
5f	0.027	0.028	0.028	0.028	0.027	0.028	0.028
6p	0.797	0.795	0.793	0.790	0.862	0.791	0.791
6d	0.009	0.010	0.010	0.010	0.008	0.010	0.010

Basis set considerations

Villa Casale, Sicily

The non-relativistic case

- Hydrogen atom (bound solutions):

$$
\psi_{n l m}(\mathbf{r})=R_{n \prime}(r) Y_{\ell m}(\theta, \phi) ; \quad R_{n \prime}(r)=\mathcal{N}_{n \ell} \rho^{\ell} e^{-\rho / 2} L_{n-\ell-1}^{2 \ell+1}(\rho) ; \quad \rho=\frac{2 r}{n a_{0}}
$$

The non-relativistic case

- Hydrogen atom (bound solutions):

$$
\psi_{n l m}(\mathbf{r})=R_{n \prime}(r) Y_{\ell m}(\theta, \phi) ; \quad R_{n l}(r)=\mathcal{N}_{n \ell} \rho^{\ell} e^{-\rho / 2} L_{n-\ell-1}^{2 \ell+1}(\rho) ; \quad \rho=\frac{2 r}{n a_{0}}
$$

- Slater-type orbitals (STOs)

$$
\chi_{n / m}^{S T O}(\mathbf{r})=\mathcal{N} r^{\ell} \exp [-\zeta r] Y_{\ell m}(\theta, \phi)
$$

The non-relativistic case

- Hydrogen atom (bound solutions):

$$
\psi_{n l m}(\mathbf{r})=R_{n \prime}(r) Y_{\ell m}(\theta, \phi) ; \quad R_{n l}(r)=\mathcal{N}_{n \ell} \rho^{\ell} e^{-\rho / 2} L_{n-\ell-1}^{2 \ell+1}(\rho) ; \quad \rho=\frac{2 r}{n a_{0}}
$$

- Slater-type orbitals (STOs)

$$
\chi_{n / m}^{S T O}(\mathbf{r})=\mathcal{N} r^{\ell} \exp [-\zeta r] Y_{\ell m}(\theta, \phi)
$$

- Gaussian-type orbitals (GTOs)

The non-relativistic case

- Hydrogen atom (bound solutions):

$$
\psi_{n l m}(\mathbf{r})=R_{n \prime}(r) Y_{\ell m}(\theta, \phi) ; \quad R_{n \prime}(r)=\mathcal{N}_{n \ell} \rho^{\ell} e^{-\rho / 2} L_{n-\ell-1}^{2 \ell+1}(\rho) ; \quad \rho=\frac{2 r}{n a_{0}}
$$

- Slater-type orbitals (STOs)

$$
\chi_{n / m}^{S T O}(\mathbf{r})=\mathcal{N} r^{\ell} \exp [-\zeta r] Y_{\ell m}(\theta, \phi)
$$

- Gaussian-type orbitals (GTOs)
- Spherical-harmonics GTOs:

$$
\chi_{n \ell m}^{G T O}(\mathbf{r})=\mathcal{N} r^{\ell} \exp \left[-\alpha r^{2}\right] Y_{\ell m}(\theta, \phi)
$$

The non-relativistic case

- Hydrogen atom (bound solutions):

$$
\psi_{n l m}(\mathbf{r})=R_{n \prime}(r) Y_{\ell m}(\theta, \phi) ; \quad R_{n \prime}(r)=\mathcal{N}_{n \ell} \rho^{\ell} e^{-\rho / 2} L_{n-\ell-1}^{2 \ell+1}(\rho) ; \quad \rho=\frac{2 r}{n a_{0}}
$$

- Slater-type orbitals (STOs)

$$
\chi_{n / m}^{\text {STO }}(\mathbf{r})=\mathcal{N} r^{\ell} \exp [-\zeta r] Y_{\ell m}(\theta, \phi)
$$

- Gaussian-type orbitals (GTOs)
- Spherical-harmonics GTOs:

$$
\chi_{n \ell m}^{G T O}(\mathbf{r})=\mathcal{N} r^{\ell} \exp \left[-\alpha r^{2}\right] Y_{\ell m}(\theta, \phi)
$$

- Cartesian GTOs:

$$
\chi_{i j k}^{G T O}(\mathbf{r})=\mathcal{N} x^{i} y^{j} z^{k} \exp \left[-\alpha r^{2}\right] ; \quad i+j+k=\ell
$$

The non-relativistic case

- Hydrogen atom (bound solutions):

$$
\psi_{n l m}(\mathbf{r})=R_{n \prime}(r) Y_{\ell m}(\theta, \phi) ; \quad R_{n \prime}(r)=\mathcal{N}_{n \ell} \rho^{\ell} e^{-\rho / 2} L_{n-\ell-1}^{2 \ell+1}(\rho) ; \quad \rho=\frac{2 r}{n a_{0}}
$$

- Slater-type orbitals (STOs)

$$
\chi_{n / m}^{\text {STO }}(\mathbf{r})=\mathcal{N} r^{\ell} \exp [-\zeta r] Y_{\ell m}(\theta, \phi)
$$

- Gaussian-type orbitals (GTOs)
- Spherical-harmonics GTOs:

$$
\chi_{n \ell m}^{G T O}(\mathbf{r})=\mathcal{N} r^{\ell} \exp \left[-\alpha r^{2}\right] Y_{\ell m}(\theta, \phi)
$$

- Cartesian GTOs:

$$
\chi_{i j k}^{G T O}(\mathbf{r})=\mathcal{N} x^{i} y^{j} z^{k} \exp \left[-\alpha r^{2}\right] ; \quad i+j+k=\ell
$$

- What about relativistic atomic solutions ?

The 2-component relativistic case

- Hydrogen atom (bound solutions):

$$
\psi_{n j m_{j}}(\mathbf{r})=R_{n j}(r) \chi_{j, m_{j}}(\theta, \phi) ; \quad\left\{\begin{array}{l}
\hat{j}^{2} \chi_{j, m_{j}}=j(j+1) \chi_{j, m_{j}} \\
\hat{j}_{z} \chi_{j, m_{j}}=m_{j} \chi_{j, m_{j}}
\end{array}\right.
$$

where $\chi_{j, m_{j}}$ are 2-component angular functions.

The 2-component relativistic case

- Hydrogen atom (bound solutions):

$$
\psi_{n j m_{j}}(\mathbf{r})=R_{n j}(r) \chi_{j, m_{j}}(\theta, \phi) ; \quad\left\{\begin{array}{l}
\hat{j}^{2} \chi_{j, m_{j}}=j(j+1) \chi_{j, m_{j}} \\
\hat{j}_{z} \chi_{j, m_{j}}=m_{j} \chi_{j, m_{j}}
\end{array}\right.
$$

where $\chi_{j, m_{j}}$ are 2-component angular functions.

- Spin-orbit splitting: $\mathbf{j}=\ell+\mathbf{s} ; \quad j=\ell \pm \frac{1}{2}$

The 2-component relativistic case

- Hydrogen atom (bound solutions):

$$
\psi_{n j m_{j}}(\mathbf{r})=R_{n j}(r) \chi_{j, m_{j}}(\theta, \phi) ; \quad\left\{\begin{array}{l}
\hat{j}^{2} \chi_{j, m_{j}}=j(j+1) \chi_{j, m_{j}} \\
\hat{j}_{z} \chi_{j, m_{j}}=m_{j} \chi_{j, m_{j}}
\end{array}\right.
$$

where $\chi_{j, m_{j}}$ are 2-component angular functions.

- Spin-orbit splitting: $\mathbf{j}=\ell+\mathbf{s} ; \quad j=\ell \pm \frac{1}{2}$

- Parent orbital has well-defined orbital angular momentum ℓ

The 2-component relativistic case

- Hydrogen atom (bound solutions):

$$
\psi_{n j m_{j}}(\mathbf{r})=R_{n j}(r) \chi_{j, m_{j}}(\theta, \phi) ; \quad\left\{\begin{array}{l}
\hat{j}^{2} \chi_{j, m_{j}}=j(j+1) \chi_{j, m_{j}} \\
\hat{j}_{z} \chi_{j, m_{j}}=m_{j} \chi_{j, m_{j}}
\end{array}\right.
$$

where $\chi_{j, m_{j}}$ are 2-component angular functions.

- Spin-orbit splitting: $\mathbf{j}=\ell+\mathbf{s} ; \quad j=\ell \pm \frac{1}{2}$

- Parent orbital has well-defined orbital angular momentum ℓ
- Suggests that

$$
\hat{\ell}^{2} \chi_{j, m_{j}}=\ell(\ell+1) \chi_{j, m_{j}}
$$

The 2-component relativistic case

- Hydrogen atom (bound solutions):

$$
\psi_{n j m_{j}}(\mathbf{r})=R_{n j}(r) \chi_{j, m_{j}}(\theta, \phi) ; \quad \begin{cases}\hat{j}^{2} \chi_{j, m_{j}} & =j(j+1) \chi_{j, m_{j}} \\ \hat{j}_{z} \chi_{j, m_{j}} & =m_{j} \chi_{j, m_{j}}\end{cases}
$$

where $\chi_{j, m_{j}}$ are 2-component angular functions.

- Spin-orbit splitting: $\mathbf{j}=\ell+\mathbf{s} ; \quad j=\ell \pm \frac{1}{2}$

- Parent orbital has well-defined orbital angular momentum ℓ
- Suggests that

$$
\hat{\ell}^{2} \chi_{j, m_{j}}=\ell(\ell+1) \chi_{j, m_{j}}
$$

- such that

$$
\chi_{j, m_{j}}=c_{\alpha} Y_{\ell m_{\alpha}} \alpha+c_{\beta} Y_{\ell m_{\beta}} \beta
$$

The 2-component relativistic case

- Hydrogen atom (bound solutions):

$$
\psi_{n j m_{j}}(\mathbf{r})=R_{n j}(r) \chi_{j, m_{j}}(\theta, \phi) ; \quad \begin{cases}\hat{j}^{2} \chi_{j, m_{j}} & =j(j+1) \chi_{j, m_{j}} \\ \hat{j}_{z} \chi_{j, m_{j}} & =m_{j} \chi_{j, m_{j}}\end{cases}
$$

where $\chi_{j, m_{j}}$ are 2-component angular functions.

- Spin-orbit splitting: $\mathbf{j}=\ell+\mathbf{s} ; \quad j=\ell \pm \frac{1}{2}$

- Parent orbital has well-defined orbital angular momentum ℓ
- Suggests that

$$
\hat{\ell}^{2} \chi_{j, m_{j}}=\ell(\ell+1) \chi_{j, m_{j}}
$$

- such that

$$
\chi_{j, m_{j}}=c_{\alpha} Y_{\ell m_{\alpha}} \alpha+c_{\beta} Y_{\ell m_{\beta}} \beta
$$

- where

$$
m_{j}=m_{\ell}+m_{s} \quad \Rightarrow \quad m_{\alpha}=m_{j}-\frac{1}{2} ; \quad m_{\beta}=m_{j}+\frac{1}{2}
$$

A new quantum number: κ

- The 2-component angular functions $\chi_{j, m_{j}}$ are eigenfunctions of both \hat{j}^{2} and $\hat{\ell}^{2}$

A new quantum number: κ

- The 2-component angular functions $\chi_{j, m_{j}}$ are eigenfunctions of both \hat{j}^{2} and $\hat{\ell}^{2}$
- However

$$
\mathbf{j}=\ell+\mathbf{s}=\ell+\frac{1}{2} \boldsymbol{\sigma} \quad \Rightarrow \quad \hat{j}^{2}=\hat{\ell}^{2}+\frac{1}{2}(\boldsymbol{\sigma} \cdot \hat{\ell})+\frac{3}{4}
$$

A new quantum number: κ

- The 2-component angular functions $\chi_{j, m_{j}}$ are eigenfunctions of both \hat{j}^{2} and $\hat{\ell}^{2}$
- However

$$
\mathbf{j}=\ell+\mathbf{s}=\ell+\frac{1}{2} \boldsymbol{\sigma} \quad \Rightarrow \quad \hat{j}^{2}=\hat{\ell}^{2}+\frac{1}{2}(\sigma \cdot \hat{\ell})+\frac{3}{4}
$$

- We introduce a new angular operator

$$
\hat{\kappa}=-[(\sigma \cdot \hat{\ell})+1]
$$

A new quantum number: κ

- The 2-component angular functions $\chi_{j, m_{j}}$ are eigenfunctions of both \hat{j}^{2} and $\hat{\ell}^{2}$
- However

$$
\mathbf{j}=\ell+\mathbf{s}=\ell+\frac{1}{2} \boldsymbol{\sigma} \quad \Rightarrow \quad \hat{j}^{2}=\hat{\ell}^{2}+\frac{1}{2}(\boldsymbol{\sigma} \cdot \hat{\ell})+\frac{3}{4}
$$

- We introduce a new angular operator

$$
\hat{\kappa}=-[(\sigma \cdot \hat{\ell})+1]
$$

- with convenient eigenvalues

	$s_{1 / 2}$	$p_{1 / 2}$	$p_{3 / 2}$	$d_{3 / 2}$	$d_{5 / 2}$	$f_{5 / 2}$	$f_{7 / 2}$
κ	-1	+1	-2	+2	-3	+3	-4

A new quantum number: κ

- The 2-component angular functions $\chi_{j, m_{j}}$ are eigenfunctions of both \hat{j}^{2} and $\hat{\ell}^{2}$
- However

$$
\mathbf{j}=\ell+\mathbf{s}=\ell+\frac{1}{2} \boldsymbol{\sigma} \quad \Rightarrow \quad \hat{j}^{2}=\hat{\ell}^{2}+\frac{1}{2}(\boldsymbol{\sigma} \cdot \hat{\ell})+\frac{3}{4}
$$

- We introduce a new angular operator

$$
\hat{\kappa}=-[(\sigma \cdot \hat{\ell})+1]
$$

- with convenient eigenvalues

	$s_{1 / 2}$	$p_{1 / 2}$	$p_{3 / 2}$	$d_{3 / 2}$	$d_{5 / 2}$	$f_{5 / 2}$	$f_{7 / 2}$
κ	-1	+1	-2	+2	-3	+3	-4

- Associated densities

The 4-component relativistic case

- Hydrogen atom (bound solutions):

$$
\psi=\left[\begin{array}{c}
\psi^{L} \\
\psi^{S}
\end{array}\right]=\left[\begin{array}{c}
R^{L} \chi_{\kappa, m_{j}}(\theta, \phi) \\
i R^{S} \chi_{-\kappa, m_{j}}(\theta, \phi)
\end{array}\right]
$$

The 4-component relativistic case

- Hydrogen atom (bound solutions):

$$
\psi=\left[\begin{array}{c}
\psi^{L} \\
\psi^{S}
\end{array}\right]=\left[\begin{array}{c}
R^{L} \chi_{\kappa, m_{j}}(\theta, \phi) \\
i R^{S} \chi_{-\kappa, m_{j}}(\theta, \phi)
\end{array}\right]
$$

- Radial functions

$$
\left[\begin{array}{l}
R^{L} \\
R^{S}
\end{array}\right]=\mathcal{N} r^{\gamma-1} e^{-\lambda r}\left[\begin{array}{l}
\mathcal{N}^{L}\left[F_{1}(r)+F_{2}(r)\right] \\
\mathcal{N}^{S}\left[F_{1}(r)-F_{2}(r)\right]
\end{array}\right]
$$

The 4-component relativistic case

- Hydrogen atom (bound solutions):

$$
\psi=\left[\begin{array}{c}
\psi^{L} \\
\psi^{S}
\end{array}\right]=\left[\begin{array}{c}
R^{L} \chi_{\kappa, m_{j}}(\theta, \phi) \\
i R^{S} \chi_{-\kappa, m_{j}}(\theta, \phi)
\end{array}\right]
$$

- Radial functions

$$
\left[\begin{array}{l}
R^{L} \\
R^{S}
\end{array}\right]=\mathcal{N} r^{\gamma-1} e^{-\lambda r}\left[\begin{array}{l}
\mathcal{N}^{L}\left[F_{1}(r)+F_{2}(r)\right] \\
\mathcal{N}^{S}\left[F_{1}(r)-F_{2}(r)\right]
\end{array}\right]
$$

- where

$$
\lambda=\frac{1}{\hbar c} \sqrt{m^{2} c^{4}-E^{2}} ; \quad \gamma=\sqrt{\kappa^{2}-(Z \alpha)^{2}}|\kappa|
$$

The 4-component relativistic case

- Hydrogen atom (bound solutions):

$$
\psi=\left[\begin{array}{c}
\psi^{L} \\
\psi^{S}
\end{array}\right]=\left[\begin{array}{c}
R^{L} \chi_{\kappa, m_{j}}(\theta, \phi) \\
i R^{S} \chi_{-\kappa, m_{j}}(\theta, \phi)
\end{array}\right]
$$

- Radial functions

$$
\left[\begin{array}{l}
R^{L} \\
R^{S}
\end{array}\right]=\mathcal{N} r^{\gamma-1} e^{-\lambda r}\left[\begin{array}{l}
\mathcal{N}^{L}\left[F_{1}(r)+F_{2}(r)\right] \\
\mathcal{N}^{S}\left[F_{1}(r)-F_{2}(r)\right]
\end{array}\right]
$$

- where

$$
\lambda=\frac{1}{\hbar c} \sqrt{m^{2} c^{4}-E^{2}} ; \quad \gamma=\sqrt{\kappa^{2}-(Z \alpha)^{2}}|\kappa|
$$

- Radial functions with $|\kappa|=1$ have a weak singularity at the origin

The 4-component relativistic case

- Hydrogen atom (bound solutions):

$$
\psi=\left[\begin{array}{c}
\psi^{L} \\
\psi^{S}
\end{array}\right]=\left[\begin{array}{c}
R^{L} \chi_{\kappa, m_{j}}(\theta, \phi) \\
i R^{S} \chi_{-\kappa, m_{j}}(\theta, \phi)
\end{array}\right]
$$

- Radial functions

$$
\left[\begin{array}{l}
R^{L} \\
R^{S}
\end{array}\right]=\mathcal{N} r^{\gamma-1} e^{-\lambda r}\left[\begin{array}{l}
\mathcal{N}^{L}\left[F_{1}(r)+F_{2}(r)\right] \\
\mathcal{N}^{S}\left[F_{1}(r)-F_{2}(r)\right]
\end{array}\right]
$$

- where

$$
\lambda=\frac{1}{\hbar c} \sqrt{m^{2} c^{4}-E^{2}} ; \quad \gamma=\sqrt{\kappa^{2}-(Z \alpha)^{2}}|\kappa|
$$

- Radial functions with $|\kappa|=1$ have a weak singularity at the origin
- serves as a "black hole" in basis set optimizations

Basis sets for relativistic calculations

- Solution: use finite nuclei

Basis sets for relativistic calculations

- Solution: use finite nuclei
- Radial functions become gaussian at the origin

Basis sets for relativistic calculations

- Solution: use finite nuclei
- Radial functions become gaussian at the origin
- Gaussian nuclear charge distribution:

$$
\rho^{G}\left(\mathbf{r}_{n}\right)=\rho_{0}^{G} \exp \left[-\eta r_{n}^{2}\right] ; \quad \rho_{0}^{G}=\frac{Z}{(\pi / \eta)^{3 / 2}}
$$

Basis sets for relativistic calculations

- Solution: use finite nuclei
- Radial functions become gaussian at the origin
- Gaussian nuclear charge distribution:

$$
\rho^{G}\left(\mathbf{r}_{n}\right)=\rho_{0}^{G} \exp \left[-\eta r_{n}^{2}\right] ; \quad \rho_{0}^{G}=\frac{Z}{(\pi / \eta)^{3 / 2}}
$$

- The exponent is chosen to satisfy the semi-empirical rule

$$
\left\langle r_{n}^{2}\right\rangle^{1 / 2}=\left[0.836 A^{1 / 3}+0.570\right] \mathrm{fm}
$$

Basis sets for relativistic calculations

- Solution: use finite nuclei
- Radial functions become gaussian at the origin
- Gaussian nuclear charge distribution:

$$
\rho^{G}\left(\mathbf{r}_{n}\right)=\rho_{0}^{G} \exp \left[-\eta r_{n}^{2}\right] ; \quad \rho_{0}^{G}=\frac{Z}{(\pi / \eta)^{3 / 2}}
$$

- The exponent is chosen to satisfy the semi-empirical rule

$$
\left\langle r_{n}^{2}\right\rangle^{1 / 2}=\left[0.836 A^{1 / 3}+0.570\right] \mathrm{fm}
$$

- 2-component basis functions

$$
\chi^{X}(\mathbf{r})=\mathcal{N} r^{\ell} \exp \left[-\alpha r^{2}\right] \chi_{\kappa, n_{j}}(\theta, \phi) ; \quad X=L, S
$$

Basis sets for relativistic calculations

- Solution: use finite nuclei
- Radial functions become gaussian at the origin
- Gaussian nuclear charge distribution:

$$
\rho^{G}\left(\mathbf{r}_{n}\right)=\rho_{0}^{G} \exp \left[-\eta r_{n}^{2}\right] ; \quad \rho_{0}^{G}=\frac{Z}{(\pi / \eta)^{3 / 2}}
$$

- The exponent is chosen to satisfy the semi-empirical rule

$$
\left\langle r_{n}^{2}\right\rangle^{1 / 2}=\left[0.836 A^{1 / 3}+0.570\right] \mathrm{fm}
$$

- 2-component basis functions

$$
\chi^{X}(\mathbf{r})=\mathcal{N} r^{\ell} \exp \left[-\alpha r^{2}\right] \chi_{\kappa, n_{j}}(\theta, \phi) ; \quad X=L, S
$$

- Scalar basis functions: spherical or Cartisian GTOs

Basis sets for relativistic calculations

- Solution: use finite nuclei
- Radial functions become gaussian at the origin
- Gaussian nuclear charge distribution:

$$
\rho^{G}\left(\mathbf{r}_{n}\right)=\rho_{0}^{G} \exp \left[-\eta r_{n}^{2}\right] ; \quad \rho_{0}^{G}=\frac{Z}{(\pi / \eta)^{3 / 2}}
$$

- The exponent is chosen to satisfy the semi-empirical rule

$$
\left\langle r_{n}^{2}\right\rangle^{1 / 2}=\left[0.836 A^{1 / 3}+0.570\right] \mathrm{fm}
$$

- 2-component basis functions

$$
\chi^{X}(\mathbf{r})=\mathcal{N} r^{\ell} \exp \left[-\alpha r^{2}\right] \chi_{\kappa, n_{j}}(\theta, \phi) ; \quad X=L, S
$$

- Scalar basis functions: spherical or Cartisian GTOs
- Allows the use of non-relativistic integral codes

Kinetic balance

- Pioneer 4c molecular calculation in the 80 s showed variational collapse

Kinetic balance

- Pioneer 4c molecular calculation in the 80 s showed variational collapse
- Ignored the exact coupling of the large and small components

$$
c \psi^{S}=\frac{1}{2 m}\left[1+\frac{E-V}{2 m c^{2}}\right]^{-1}(\boldsymbol{\sigma} \cdot \mathbf{p}) \psi^{L}
$$

Kinetic balance

- Pioneer 4c molecular calculation in the 80s showed variational collapse
- Ignored the exact coupling of the large and small components

$$
c \psi^{S}=\frac{1}{2 m}\left[1+\frac{E-V}{2 m c^{2}}\right]^{-1}(\boldsymbol{\sigma} \cdot \mathbf{p}) \psi^{L}
$$

- Modified by the introduction of magnetic fields: $\mathbf{p} \rightarrow \mathbf{p}+e \mathbf{A}$

Kinetic balance

- Pioneer 4c molecular calculation in the 80s showed variational collapse
- Ignored the exact coupling of the large and small components

$$
c \Psi^{S}=\frac{1}{2 m}\left[1+\frac{E-V}{2 m c^{2}}\right]^{-1}(\boldsymbol{\sigma} \cdot \mathbf{p}) \psi^{L}
$$

- Modified by the introduction of magnetic fields: $\mathbf{p} \rightarrow \mathbf{p}+e \mathbf{A}$
- Modern-day basis sets are generated according to the non-relativistic limit

$$
\lim _{c \rightarrow \infty} c \Psi^{S}=\frac{1}{2 m}(\boldsymbol{\sigma} \cdot \mathbf{p}) \psi^{L}
$$

Kinetic balance

- Pioneer 4c molecular calculation in the 80 s showed variational collapse
- Ignored the exact coupling of the large and small components

$$
c \Psi^{S}=\frac{1}{2 m}\left[1+\frac{E-V}{2 m c^{2}}\right]^{-1}(\boldsymbol{\sigma} \cdot \mathbf{p}) \psi^{L}
$$

- Modified by the introduction of magnetic fields: $\mathbf{p} \rightarrow \mathbf{p}+e \mathbf{A}$
- Modern-day basis sets are generated according to the non-relativistic limit

$$
\lim _{c \rightarrow \infty} c \Psi^{S}=\frac{1}{2 m}(\boldsymbol{\sigma} \cdot \mathbf{p}) \psi^{L}
$$

- Assumes $E \ll 2 m c^{2}$

Kinetic balance

- Pioneer 4c molecular calculation in the 80 s showed variational collapse
- Ignored the exact coupling of the large and small components

$$
c \Psi^{S}=\frac{1}{2 m}\left[1+\frac{E-V}{2 m c^{2}}\right]^{-1}(\boldsymbol{\sigma} \cdot \mathbf{p}) \psi^{L}
$$

- Modified by the introduction of magnetic fields: $\mathbf{p} \rightarrow \mathbf{p}+e \mathbf{A}$
- Modern-day basis sets are generated according to the non-relativistic limit

$$
\lim _{c \rightarrow \infty} c \Psi^{S}=\frac{1}{2 m}(\boldsymbol{\sigma} \cdot \mathbf{p}) \psi^{L}
$$

- Assumes $E \ll 2 m c^{2}$
- vaild for positive-energy solutions only

Kinetic balance

- Pioneer 4c molecular calculation in the 80 s showed variational collapse
- Ignored the exact coupling of the large and small components

$$
c \Psi^{S}=\frac{1}{2 m}\left[1+\frac{E-V}{2 m c^{2}}\right]^{-1}(\boldsymbol{\sigma} \cdot \mathbf{p}) \psi^{L}
$$

- Modified by the introduction of magnetic fields: $\mathbf{p} \rightarrow \mathbf{p}+e \mathbf{A}$
- Modern-day basis sets are generated according to the non-relativistic limit

$$
\lim _{c \rightarrow \infty} c \Psi^{S}=\frac{1}{2 m}(\boldsymbol{\sigma} \cdot \mathbf{p}) \psi^{L}
$$

- Assumes $E \ll 2 m c^{2}$
- vaild for positive-energy solutions only
- Assumes $V \ll 2 m c^{2}$

Kinetic balance

- Pioneer 4c molecular calculation in the 80 s showed variational collapse
- Ignored the exact coupling of the large and small components

$$
c \Psi^{S}=\frac{1}{2 m}\left[1+\frac{E-V}{2 m c^{2}}\right]^{-1}(\boldsymbol{\sigma} \cdot \mathbf{p}) \psi^{L}
$$

- Modified by the introduction of magnetic fields: $\mathbf{p} \rightarrow \mathbf{p}+e \mathbf{A}$
- Modern-day basis sets are generated according to the non-relativistic limit

$$
\lim _{c \rightarrow \infty} c \psi^{S}=\frac{1}{2 m}(\boldsymbol{\sigma} \cdot \mathbf{p}) \psi^{L}
$$

- Assumes $E \ll 2 m c^{2}$
- vaild for positive-energy solutions only
- Assumes $V \ll 2 m c^{2}$
- non-singular potential; finite nuclei

Relativistic effective core potentials

The frozen-core approximation

4-component relativistic Hartree-Fock calculations

- Hg: polarizability $\left(\AA^{-3}\right)$

$$
\begin{array}{rl|l}
1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 4 f^{14} 5 s^{2} 5 p^{6} 5 d^{10} 6 s^{2} & 6.61 \\
5 s^{2} 5 p^{6} 5 d^{10} 6 s^{2} & 6.61 \\
5 d^{10} 6 s^{2} & 6.60 \\
6 s^{2} & 6.31
\end{array}
$$

The frozen-core approximation

4-component relativistic Hartree-Fock calculations

- Hg: polarizability $\left(\AA^{-3}\right)$

$$
\begin{array}{rr|r}
1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 4 f^{14} 5 s^{2} 5 p^{6} 5 d^{10} 6 s^{2} & 6.61 \\
5 s^{2} 5 p^{6} 5 d^{10} 6 s^{2} & 6.61 \\
5 d^{10} 6 s^{2} & 6.60 \\
6 s^{2} & 6.31
\end{array}
$$

- Au: ionization potential/electron affinity (eV)

The frozen-core approximation

4-component relativistic Hartree-Fock calculations

- Hg: polarizability $\left(\AA^{-3}\right)$

$$
\begin{array}{rr|r}
1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 4 f^{14} 5 s^{2} 5 p^{6} 5 d^{10} 6 s^{2} & 6.61 \\
5 s^{2} 5 p^{6} 5 d^{10} 6 s^{2} & 6.61 \\
5 d^{10} 6 s^{2} & 6.60 \\
6 s^{2} & 6.31
\end{array}
$$

- Au: ionization potential/electron affinity (eV)

- Heavy elements = many electrons !

The frozen-core approximation

4-component relativistic Hartree-Fock calculations

- Hg: polarizability $\left(\AA^{-3}\right)$

$$
\begin{array}{rl|l}
1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 4 f^{14} 5 s^{2} 5 p^{6} 5 d^{10} 6 s^{2} & 6.61 \\
5 s^{2} 5 p^{6} 5 d^{10} 6 s^{2} & 6.61 \\
5 d^{10} 6 s^{2} & 6.60 \\
6 s^{2} & 6.31
\end{array}
$$

- Au: ionization potential/electron affinity (eV)

- Heavy elements $=$ many electrons !

coronene

176 electrons $\quad \mathrm{Pt}_{2}$

Philips-Kleinman equation

Valid for a single valence orbital φ_{v} outside a closed-shell core $\left\{\varphi_{c}\right\}$

- Hartree-Fock equation

$$
\hat{F}\left|\varphi_{v}\right\rangle=\left|\varphi_{v}\right\rangle \varepsilon_{v} ; \quad\left\langle\varphi_{v} \mid \varphi_{c}\right\rangle=0, \quad \forall \varphi_{c}
$$

Philips-Kleinman equation

Valid for a single valence orbital φ_{v} outside a closed-shell core $\left\{\varphi_{c}\right\}$

- Hartree-Fock equation

$$
\hat{F}\left|\varphi_{v}\right\rangle=\left|\varphi_{v}\right\rangle \varepsilon_{v} ; \quad\left\langle\varphi_{v} \mid \varphi_{c}\right\rangle=0, \quad \forall \varphi_{c}
$$

- We introduce a pseudo-valence orbital

$$
\left|\chi_{v}\right\rangle=\left|\varphi_{v}\right\rangle+\sum_{c}\left|\varphi_{c}\right\rangle a_{c v} ; \quad a_{c v}=\left\langle\varphi_{c} \mid \chi_{v}\right\rangle
$$

Philips-Kleinman equation

Valid for a single valence orbital φ_{v} outside a closed-shell core $\left\{\varphi_{c}\right\}$

- Hartree-Fock equation

$$
\hat{F}\left|\varphi_{v}\right\rangle=\left|\varphi_{v}\right\rangle \varepsilon_{v} ; \quad\left\langle\varphi_{v} \mid \varphi_{c}\right\rangle=0, \quad \forall \varphi_{c}
$$

- We introduce a pseudo-valence orbital

$$
\left|\chi_{v}\right\rangle=\left|\varphi_{v}\right\rangle+\sum_{c}\left|\varphi_{c}\right\rangle a_{c v} ; \quad a_{c v}=\left\langle\varphi_{c} \mid \chi_{v}\right\rangle
$$

- and set up a new Hartree-Fock equation

$$
\begin{aligned}
\hat{F}\left|\chi_{v}\right\rangle & =\left|\varphi_{v}\right\rangle \varepsilon_{v}+\sum_{c}\left|\varphi_{c}\right\rangle a_{c v} \varepsilon_{c} \\
& +\sum_{c}\left|\varphi_{c}\right\rangle a_{c v} \varepsilon_{v}-\sum_{c}\left|\varphi_{c}\right\rangle\left\langle\varphi_{c} \mid \chi_{v}\right\rangle \varepsilon_{v}
\end{aligned}
$$

Philips-Kleinman equation

Valid for a single valence orbital φ_{v} outside a closed-shell core $\left\{\varphi_{c}\right\}$

- Hartree-Fock equation

$$
\hat{F}\left|\varphi_{v}\right\rangle=\left|\varphi_{v}\right\rangle \varepsilon_{v} ; \quad\left\langle\varphi_{v} \mid \varphi_{c}\right\rangle=0, \quad \forall \varphi_{c}
$$

- We introduce a pseudo-valence orbital

$$
\left|\chi_{v}\right\rangle=\left|\varphi_{v}\right\rangle+\sum_{c}\left|\varphi_{c}\right\rangle a_{c v} ; \quad a_{c v}=\left\langle\varphi_{c} \mid \chi_{v}\right\rangle
$$

- and set up a new Hartree-Fock equation

$$
\begin{aligned}
\hat{F}\left|\chi_{v}\right\rangle & =\left|\varphi_{v}\right\rangle \varepsilon_{v}+\sum_{c}\left|\varphi_{c}\right\rangle a_{c v} \varepsilon_{c} \\
& +\sum_{c}\left|\varphi_{c}\right\rangle a_{c v} \varepsilon_{v}-\sum_{c}\left|\varphi_{c}\right\rangle\left\langle\varphi_{c} \mid \chi_{v}\right\rangle \varepsilon_{v}
\end{aligned}
$$

- This can be rearranged to

$$
\left(\hat{F}+\sum_{c}\left(\varepsilon_{v}-\varepsilon_{c}\right)\left|\varphi_{c}\right\rangle\left\langle\varphi_{c}\right|\right)\left|\chi_{v}\right\rangle=\left|\chi_{v}\right\rangle \varepsilon_{v}
$$

Philips-Kleinman equation

Valid for a single valence orbital φ_{v} outside a closed-shell core $\left\{\varphi_{c}\right\}$

- Hartree-Fock equation

$$
\hat{F}\left|\varphi_{v}\right\rangle=\left|\varphi_{v}\right\rangle \varepsilon_{v} ; \quad\left\langle\varphi_{v} \mid \varphi_{c}\right\rangle=0, \quad \forall \varphi_{c}
$$

- We introduce a pseudo-valence orbital

$$
\left|\chi_{v}\right\rangle=\left|\varphi_{v}\right\rangle+\sum_{c}\left|\varphi_{c}\right\rangle a_{c v} ; \quad a_{c v}=\left\langle\varphi_{c} \mid \chi_{v}\right\rangle
$$

- and set up a new Hartree-Fock equation

$$
\begin{aligned}
\hat{F}\left|\chi_{v}\right\rangle & =\left|\varphi_{v}\right\rangle \varepsilon_{v}+\sum_{c}\left|\varphi_{c}\right\rangle a_{c v} \varepsilon_{c} \\
& +\sum_{c}\left|\varphi_{c}\right\rangle a_{c v} \varepsilon_{v}-\sum_{c}\left|\varphi_{c}\right\rangle\left\langle\varphi_{c} \mid \chi_{v}\right\rangle \varepsilon_{v}
\end{aligned}
$$

- This can be rearranged to

$$
\left(\hat{F}+\sum_{c}\left(\varepsilon_{v}-\varepsilon_{c}\right)\left|\varphi_{c}\right\rangle\left\langle\varphi_{c}\right|\right)\left|\chi_{v}\right\rangle=\left|\chi_{v}\right\rangle \varepsilon_{v}
$$

- Further manipulation gives

$$
\left(\hat{F}_{v}+V_{P P}\right)\left|\chi_{v}\right\rangle=\left|\chi_{v}\right\rangle \varepsilon_{v} ; \quad V_{P P}=\hat{F}_{c}+\sum_{c}\left(\varepsilon_{v}-\varepsilon_{c}\right)\left|\varphi_{c}\right\rangle\left\langle\varphi_{c}\right|
$$

Effective core potentials

- Model core potentials: Valence orbitals with full nodal structure

$$
V_{M C P}=\sum_{A}\left\{\sum_{k} A_{k} r_{i A}^{n_{k}} e^{-\alpha_{k} r_{i}^{2}}+\sum_{b} B_{c}\left|\varphi_{A ; c}\right\rangle\left\langle\varphi_{A ; c}\right|\right\}
$$

Effective core potentials

- Model core potentials: Valence orbitals with full nodal structure

$$
V_{M C P}=\sum_{A}\left\{\sum_{k} A_{k} r_{i A}^{n_{k}} e^{-\alpha_{k} r_{i}^{2}}+\sum_{b} B_{c}\left|\varphi_{A ; c}\right\rangle\left\langle\varphi_{A ; c}\right|\right\}
$$

- Can be combined with relativistic Hamiltonians

Effective core potentials

- Model core potentials: Valence orbitals with full nodal structure

$$
V_{M C P}=\sum_{A}\left\{\sum_{k} A_{k} r_{i A}^{n_{k}} e^{-\alpha_{k} r_{i}^{2}}+\sum_{b} B_{c}\left|\varphi_{A ; c}\right\rangle\left\langle\varphi_{A ; c}\right|\right\}
$$

- Can be combined with relativistic Hamiltonians
- Moderate basis set reduction

Effective core potentials

- Model core potentials: Valence orbitals with full nodal structure

$$
V_{M C P}=\sum_{A}\left\{\sum_{k} A_{k} r_{i A}^{n_{k}} e^{-\alpha_{k} r_{i}^{2}}+\sum_{b} B_{c}\left|\varphi_{A ; c}\right\rangle\left\langle\varphi_{A ; c}\right|\right\}
$$

- Can be combined with relativistic Hamiltonians
- Moderate basis set reduction
- Pseudopotentials: Nodeless pseudo-valence orbitals

Effective core potentials

- Model core potentials: Valence orbitals with full nodal structure

$$
V_{M C P}=\sum_{A}\left\{\sum_{k} A_{k} r_{i A}^{n_{k}} e^{-\alpha_{k} r_{i}^{2}}+\sum_{b} B_{c}\left|\varphi_{A_{i ;}}\right\rangle\left\langle\varphi_{A_{i ;} \mid}\right|\right\}
$$

- Can be combined with relativistic Hamiltonians
- Moderate basis set reduction
- Pseudopotentials: Nodeless pseudo-valence orbitals
- Relativistic Hamiltonians can not be used since they in particular probe the core region

Effective core potentials

- Model core potentials: Valence orbitals with full nodal structure

$$
V_{M C P}=\sum_{A}\left\{\sum_{k} A_{k} r_{i A}^{n_{k}} e^{-\alpha_{k} r_{i}^{2}}+\sum_{b} B_{c}\left|\varphi_{A ; c}\right\rangle\left\langle\varphi_{A ; c}\right|\right\}
$$

- Can be combined with relativistic Hamiltonians
- Moderate basis set reduction
- Pseudopotentials: Nodeless pseudo-valence orbitals
- Relativistic Hamiltonians can not be used since they in particular probe the core region
\star Relativistic effects enter through parametrization

Effective core potentials

- Model core potentials: Valence orbitals with full nodal structure

$$
V_{M C P}=\sum_{A}\left\{\sum_{k} A_{k} r_{i A}^{n_{k}} e^{-\alpha_{k} r_{i}^{2}}+\sum_{b} B_{c}\left|\varphi_{A ; c}\right\rangle\left\langle\varphi_{A ; c}\right|\right\}
$$

- Can be combined with relativistic Hamiltonians
- Moderate basis set reduction
- Pseudopotentials: Nodeless pseudo-valence orbitals
- Relativistic Hamiltonians can not be used since they in particular probe the core region
« Relativistic effects enter through parametrization
- Significant basis set reduction

Semi-local pseudopotentials

- Valence-only electronic Hamiltonian

$$
H_{v}=\sum_{i}^{n_{V}}\left[-\frac{1}{2} \nabla_{i}^{2}+\sum_{A}\left(V_{P P ; A}\left(\boldsymbol{r}_{i A}\right)-\frac{Q_{A}}{r_{i A}}\right)\right]+\frac{1}{2} \sum_{i \neq j}^{n_{V}} \frac{1}{r_{i j}}+\frac{1}{2} \sum_{A \neq B} \frac{Q_{A} Q_{B}}{R_{A B}}
$$

Semi-local pseudopotentials

- Valence-only electronic Hamiltonian

$$
H_{v}=\sum_{i}^{n_{V}}\left[-\frac{1}{2} \nabla_{i}^{2}+\sum_{A}\left(V_{P P ; A}\left(\boldsymbol{r}_{i A}\right)-\frac{Q_{A}}{r_{i A}}\right)\right]+\frac{1}{2} \sum_{i \neq j}^{n_{V}} \frac{1}{r_{i j}}+\frac{1}{2} \sum_{A \neq B} \frac{Q_{A} Q_{B}}{R_{A B}}
$$

- Core charges: $Q_{A}=Z_{A}-n_{C}^{A}$

Semi-local pseudopotentials

- Valence-only electronic Hamiltonian

$$
H_{v}=\sum_{i}^{n_{v}}\left[-\frac{1}{2} \nabla_{i}^{2}+\sum_{A}\left(V_{P P ; A}\left(\boldsymbol{r}_{i A}\right)-\frac{Q_{A}}{r_{i A}}\right)\right]+\frac{1}{2} \sum_{i \neq j}^{n_{v}} \frac{1}{r_{i j}}+\frac{1}{2} \sum_{A \neq B} \frac{Q_{A} Q_{B}}{R_{A B}}
$$

- Core charges: $Q_{A}=Z_{A}-n_{C}^{A}$
- Semi-local pseudopotential

$$
V_{P P ; A}\left(\boldsymbol{r}_{i A}\right)=\tilde{V}_{\text {local }}\left(r_{i A}\right)+\sum_{\ell=0}^{\ell_{\max }} \tilde{V}_{\ell}\left(r_{i A}\right) \sum_{m_{\ell}=-\ell}^{\ell}\left|\ell m_{\ell}\right\rangle\left\langle\ell m_{\ell}\right|
$$

Semi-local pseudopotentials

- Valence-only electronic Hamiltonian

$$
H_{v}=\sum_{i}^{n_{v}}\left[-\frac{1}{2} \nabla_{i}^{2}+\sum_{A}\left(V_{P P ; A}\left(\boldsymbol{r}_{i A}\right)-\frac{Q_{A}}{r_{i A}}\right)\right]+\frac{1}{2} \sum_{i \neq j}^{n_{v}} \frac{1}{r_{i j}}+\frac{1}{2} \sum_{A \neq B} \frac{Q_{A} Q_{B}}{R_{A B}}
$$

- Core charges: $Q_{A}=Z_{A}-n_{C}^{A}$
- Semi-local pseudopotential

$$
\begin{gathered}
V_{P P ; A}\left(\boldsymbol{r}_{i A}\right)=\tilde{V}_{\text {local }}\left(r_{i A}\right)+\sum_{\ell=0}^{\ell_{\max }} \tilde{V}_{\ell}\left(r_{i A}\right) \sum_{m_{\ell}=-\ell}^{\ell}\left|\ell m_{\ell}\right\rangle\left\langle\ell m_{\ell}\right| \\
\tilde{V}(r)=\sum_{k} A_{k} r^{n_{k}} \exp \left[-\alpha_{k} r^{2}\right]
\end{gathered}
$$

Semi-local pseudopotentials

- Valence-only electronic Hamiltonian

$$
H_{v}=\sum_{i}^{n_{v}}\left[-\frac{1}{2} \nabla_{i}^{2}+\sum_{A}\left(V_{P P ; A}\left(\boldsymbol{r}_{i A}\right)-\frac{Q_{A}}{r_{i A}}\right)\right]+\frac{1}{2} \sum_{i \neq j}^{n_{v}} \frac{1}{r_{i j}}+\frac{1}{2} \sum_{A \neq B} \frac{Q_{A} Q_{B}}{R_{A B}}
$$

- Core charges: $Q_{A}=Z_{A}-n_{C}^{A}$
- Semi-local pseudopotential

$$
\begin{gathered}
V_{P P ; A}\left(\boldsymbol{r}_{i A}\right)=\tilde{V}_{\text {local }}\left(r_{i A}\right)+\sum_{\ell=0}^{\ell_{\max }} \tilde{V}_{\ell}\left(r_{i A}\right) \sum_{m_{\ell}=-\ell}^{\ell}\left|\ell m_{\ell}\right\rangle\left\langle\ell m_{\ell}\right| \\
\tilde{V}(r)=\sum_{k} A_{k} r^{n_{k}} \exp \left[-\alpha_{k} r^{2}\right]
\end{gathered}
$$

- How do we determine parameters $\left\{A_{k}, \alpha_{k}, n_{k}\right\}$?

Pseudopotential parametrization

- Energy-consistent pseudopotentials: (Preuss, Stoll, Dolg, Schwerdtfeger.....)

Pseudopotential parametrization

- Energy-consistent pseudopotentials: (Preuss, Stoll, Dolg, Schwerdtfeger.....)
- Semi-empirical vs. ab initio

Pseudopotential parametrization

- Energy-consistent pseudopotentials: (Preuss, Stoll, Dolg, Schwerdtfeger.....)
- Semi-empirical vs. ab initio
- Shape-consistent pseudopotentials: (Hay, Wadt, Christiansen, Ermler, Cundari, Stevens....)

Pseudopotential parametrization

- Energy-consistent pseudopotentials: (Preuss, Stoll, Dolg, Schwerdtfeger.....)
- Semi-empirical vs. ab initio
- Shape-consistent pseudopotentials: (Hay, Wadt, Christiansen, Ermler, Cundari, Stevens....)
- Pseudovalence orbital

$$
R_{p}(r)= \begin{cases}R_{v}(r) ; & r \geq r_{c} \\ f(r) ; & r<r_{c}\end{cases}
$$

Pseudopotential parametrization

- Energy-consistent pseudopotentials:
(Preuss, Stoll, Dolg, Schwerdtfeger.....)
- Semi-empirical vs. ab initio
- Shape-consistent pseudopotentials: (Hay, Wadt, Christiansen, Ermler, Cundari, Stevens....)
- Pseudovalence orbital

$$
R_{p}(r)= \begin{cases}R_{v}(r) ; & r \geq r_{c} \\ f(r) ; & r<r_{c}\end{cases}
$$

- $V_{P P}$ is then found by inversion of radial equation for the pseudovalence orbital

$$
\left(\hat{F}_{v}(r)+V_{P P}\right) R_{p}(r)=R_{p}(r) \varepsilon_{v} \quad \Rightarrow \quad V_{P P}(r)=\frac{\left(\varepsilon_{v}-\hat{F}_{v}(r)\right) R_{p}(r)}{R_{p}(r)}
$$

Introducing relativistic effects

- With both scalar relativistic (SR) and spin-orbit (SO) interaction included one would expect the form

$$
V_{P P ; A}\left(\mathbf{r}_{i A}\right)=\sum_{\ell=0}^{\ell_{\max }} \sum_{j=|\ell-1 / 2|}^{\ell+1 / 2} \tilde{V}_{\ell j}\left(r_{i A}\right) \sum_{m_{j}=-j}^{j}\left|\ell j m_{j}\right\rangle\left\langle\ell j m_{j}\right|
$$

Introducing relativistic effects

- With both scalar relativistic (SR) and spin-orbit (SO) interaction included one would expect the form

$$
V_{P P ; A}\left(\boldsymbol{r}_{i A}\right)=\sum_{\ell=0}^{\ell=0} \sum_{j=|\ell-1 / 2|}^{\ell+1 / 2} \tilde{V}_{\ell j}\left(r_{i A}\right) \sum_{m_{j}=-j}^{j}\left|\ell j m_{j}\right\rangle\left\langle\ell j m_{j}\right|
$$

- In practice the contributions are separated

$$
\begin{aligned}
V_{P P ; A}^{S R} & =\sum_{\ell=0}^{\ell_{\max }} \frac{1}{(2 \ell+1)}\left[(\ell+1) \tilde{V}_{\ell, \ell+1 / 2}+\ell \tilde{V}_{\ell, \ell-1 / 2}\right] \sum_{m_{\ell}=-\ell}^{\ell}\left|\ell m_{\ell}\right\rangle\left\langle\ell m_{\ell}\right| \\
V_{P P ; A}^{S O} & =\sigma \cdot \sum_{\ell=0}^{\ell_{\max }} \frac{1}{(2 \ell+1)}\left[\tilde{V}_{\ell, \ell+1 / 2}-\tilde{V}_{\ell, \ell-1 / 2}\right] \sum_{m_{\ell}, m_{\ell}^{\prime}=-\ell}^{\ell}\left|\ell m_{\ell}\right\rangle\left\langle\ell m_{\ell}\right| \ell\left|\ell^{\prime} m_{\ell}^{\prime}\right\rangle\left\langle\ell^{\prime} m_{\ell}^{\prime}\right|
\end{aligned}
$$

Some important points

- Size of core

Some important points

- Size of core
- Choice of valence basis

Some important points

- Size of core
- Choice of valence basis
- RECPs have names, just like basis sets !

Some important points

- Size of core
- Choice of valence basis
- RECPs have names, just like basis sets !
- Effective core potentials have limited applicability (in principle no core properties), but are an excellent choice for many applications.

Short bibliography

- T. Saue, Relativistic Hamiltonians for chemistry: a primer, ChemPhysChem 12 (2011) 3077
- J. Autschbach, Spotlight on Relativistic Effects, J. Chem. Phys 136 (2012) 150902
- K. G. Dyall and K. Fægri: Introduction to Relativistic Quantum Chemistry, Oxford University Press, USA (2007)
- M. Reiher and A. Wolf: Relativistic Quantum Chemistry: The Fundamental Theory of Molecular Science, Wiley-VCH (2009)
- P. Schwerdtfeger (editor): Relativistic Electronic Structure Theory: Part 1. Fundamentals, Elsevier, Amsterdam 2002.
- P. Schwerdtfeger (editor): Relativistic Electronic Structure Theory: Part 2. Applications, Elsevier, Amsterdam 2004.
- R. E. Moss: Advanced Molecular Quantum Mechanics, Chapman and Hall, London 1973.
- P. Strange: Relativistic Quantum Mechanics: With Applications in Condensed Matter and Atomic Physics, Cambridge University Press (1998)
- M. Dolg (ed.), Lanthanide and actinide computational chemistry, Wiley 2015
- T. Saue and L. Visscher:Relativistic all-electron approaches to the study of f element chemistry
- L. J. Norrby, Why is mercury liquid ?, J.Chem.Ed. 68 (1991) 110
- P. Schwerdtfeger, The pseudopotential Approximation in Electronic Structure Theory, ChemPhysChem 12 (2011) 3143
- M. Dolg and X. Cao, Relativistic Pseudopotentials: Their Development and Scope of Applications, Chem. Rev. 112 (2012) 403

[^0]: E. J. Baerends, W. H. E. Schwarz, P. Schwerdtfeger and J. G. Snijders, J. Phys. B. 23(1990) 3225; V. Kellö and A. J. Sadlej, Int. J. Quant. Chem. 68 (1998) 159; M. Pernpointer and P. Schwerdtfeger, Chem. Phys. Lett. 295(1998) 347; V. Kellö and A. J. Sadlej, Theoret. Chim. Acta 547(2001) 35; J. Seino, W. Uesugi and M. Hada, J. Chem. Phys. 132 (2010) 164108

[^1]: E. J. Baerends, W. H. E. Schwarz, P. Schwerdtfeger and J. G. Snijders, J. Phys. B. 23(1990) 3225; V. Kellö and A. J. Sadlej, Int. J. Quant. Chem. 68 (1998) 159; M. Pernpointer and P. Schwerdtfeger, Chem. Phys. Lett. 295(1998) 347; V. Kellö and A. J. Sadlej, Theoret. Chim. Acta 547(2001) 35; J. Seino, W. Uesugi and M. Hada, J. Chem. Phys. 132 (2010) 164108

[^2]: E. J. Baerends, W. H. E. Schwarz, P. Schwerdtfeger and J. G. Snijders, J. Phys. B. 23(1990) 3225; V. Kellö and A. J. Sadlej, Int. J. Quant. Chem. 68 (1998) 159; M. Pernpointer and P. Schwerdtfeger, Chem. Phys. Lett. 295(1998) 347; V. Kellö and A. J. Sadlej, Theoret. Chim. Acta 547(2001) 35; J. Seino, W. Uesugi and M. Hada, J. Chem. Phys. 132 (2010) 164108

[^3]: E. J. Baerends, W. H. E. Schwarz, P. Schwerdtfeger and J. G. Snijders, J. Phys. B. 23(1990) 3225; V. Kellö and A. J. Sadlej, Int. J. Quant. Chem. 68 (1998) 159; M. Pernpointer and P. Schwerdtfeger, Chem. Phys. Lett. 295(1998) 347; V. Kellö and A. J. Sadlej, Theoret. Chim. Acta 547(2001) 35; J. Seino, W. Uesugi and M. Hada, J. Chem. Phys. 132 (2010) 164108

[^4]: E. J. Baerends, W. H. E. Schwarz, P. Schwerdtfeger and J. G. Snijders, J. Phys. B. 23(1990) 3225; V. Kellö and A. J. Sadlej, Int. J. Quant. Chem. 68 (1998) 159; M. Pernpointer and P. Schwerdtfeger, Chem. Phys. Lett. 295(1998) 347; V. Kellö and A. J. Sadlej, Theoret. Chim. Acta 547(2001) 35; J. Seino, W. Uesugi and M. Hada, J. Chem. Phys. 132 (2010) 164108

