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The Dirac village
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Our playground: the periodic table
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The periodic table ... of 1871

eka-aluminium:
gallium (1875)

eka-silicon:
germanium (1886)

eka-boron:
scandium (1879)
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Broken trends

Goldschmidt and Einstein in Norway 1920

Relativistic effects

scalar effects

spin-orbit
interaction

Lorentz factor:

γ =
1√

1− v2

c2

Lanthanide contraction
V.M. Goldschmidt, T. Barth, G. Lunde:
Norske Vidensk. Selsk. Skrifter I Mat.
Naturv. Kl. 7, 1 (1925)
D. R. Lloyd, J. Chem. Ed. 63 (1986) 503

La3+ - Lu3+ (117.2 - 100.1 pm)

Ca2+ - Zn2+ (114 - 88 pm)

Cu (138 pm) < Au (144 pm)
< Ag (153 pm)

P.S.Bagus et al., Chem. Phys. Lett. 33 (1975) 408
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Ionization energy of gold
O. Fossgaard, O. Gropen, E. Eliav and T. Saue, J. Chem. Phys. 119 (2003) 9355
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Electron affinity of gold
O. Fossgaard, O. Gropen, E. Eliav and T. Saue, J. Chem. Phys. 119 (2003) 9355

Gold and caesium are extremes on the electron affinity scale — 2.309 eV vs. 0.472 eV

CsAu is a semi-conductor with a CsCl crystal structure in the solid state;
it forms an ionic melt. The oxidation state of gold is -I.
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Spectroscopic constants of CsAu and homologues
O. Fossgaard, O. Gropen, E. Eliav and T. Saue, J. Chem. Phys. 119 (2003) 9355

Method re (pm) ωe (cm−1) ωexe (cm−1) Dcov
e (eV) µ (D)

CsAu CCSD(T) rel 326.3 89.4 0.21 2.52 11.73
nrel 357.1 67.9 0.08 1.34 11.05
nrel-ps 376.3 59.9 0.13 1.17 9.47

Exp.[1]a (320) (125) 2.58±0.03
Exp.[1]b - - - 2.53±0.03 -

CsAg CCSD(T) rel 331.6 88.0 0.17 1.51 10.69
nrel 345.9 78.5 0.02 1.26 10.89

CsCu CCSD(T) rel 319.8 101.6 0.09 1.36 10.34
nrel 327.7 97.1 0.18 1.31 10.88

1) B. Busse and K. G. Weil, Ber. Bunsenges. Phys. Chem. 85(1981) 309
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Without relativity

.. gold would have the same color as silver

...mercury would not be liquid
at room temperature

.. your car would not start
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Einstein’s special theory of relativity
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Reference frames
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Reference frames

The theory of special relativity is restricted to inertial frames :
reference frames related by constant velocity

It is based on two postulates:
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The principle of relativity

1. The laws of motion are the same in all inertial frames

Galileo Galilei (1632)
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... but some frames may be better than others

Speed of boat with respect to the river bank: 3 km/h

Speed of water with respect to the river bank: 7 km/h

Hint: you do not need this information....
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Einsteins contribution (1905)

2. The speed c of light is the same in all inertial frames

speed = distance
time

Implies plasticity of space and time
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Simultaneity: a relative concept

Observer in the train:

tb = ta

Observer on the ground:

tb < ta

Two events that are simultaneous in one inertial frame
are generally not so in another inertial frame.

Picture credit: Griffiths: Introduction to Electrodynamics (1999)
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Time dilation

Observer in the train:

c∆t = h

Observer on the ground:

c∆t =

√
h2 + (v∆t)2

∆t = γ∆t > ∆t; Lorentz factor: γ =
1√

1− v 2/c2

Clocks in movement go slower.

Picture credit: Griffiths: Introduction to Electrodynamics (1999)
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Length contraction

Observer in the train:

c∆t = 2∆x

Observer on the ground:

c∆t1 = ∆x + v∆t1

c∆t2 = ∆x − v∆t2

∆t = ∆t1 +∆t2 =
∆x

c − v
+

∆x

c + v

∆t = 2
∆x

c
γ2 = γ∆t = γ

2∆x

c

∆x = γ∆x

An object in movement is contracted in the direction of movement
Picture credit: Griffiths: Introduction to Electrodynamics (1999)
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Paradox of the barn and the ladder

Picture credit: Griffiths: Introduction to Electrodynamics (1999)
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Lorentz transformation

x = d + vt

d =


x ; (Galilei)

γ−1x ; (Lorentz)

x = γ (x − vt)

x = γ (x + vt)

t = γ
(
t − v

c2
x
)
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Let us look at a relativistic theory ...

Electrodynamics
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Maxwell’s equations
(SI-based atomic units: ℏ = me = e = 4πε0 = 1)

The homogeneous pair:

∇ · B = 0

∇× E+
∂B

∂t
= 0

The inhomogeneous pair includes sources:
the charge density ρ and current density j (c is the speed of light)

∇ · E = 4πρ

∇× B− 1

c2
∂E

∂t
=

4π

c2
j

Are the electric field E and the magnetic field B uniquely determined
by their divergence (∇ · . . .) and curl (∇× . . .) ?
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Maxwell’s equations: boundary conditions

The answer is NO !!!!
The two vectors

F1 = (0, 0, 0)

F2 = (yz , zx , xy)

both have zero divergence and zero curl

Boundary conditions must be introduced:

▶ E and B go to zero at infinity
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The Helmholtz theorem

The vector relation
∇2F = ∇ (∇ · F)−∇× (∇× F)

can also be seen as an equation

and has solution
F(r) = −∇s(r) +∇× v(r)

where

s (r1) =
1

4π

∫
∇2 · F(r2)

r12
d3r2; v(r1) =

1

4π

∫
∇2 × F(r2)

r12
d3r2

The divergence and curl of F must go to zero faster than 1
r2

;
otherwise the above integrals blow up in the limit.

This results show that we can reconstruct a vector function from knowledge of its
divergence and curl combined with proper boundary conditions.
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Jefimenko’s solutions

General solutions of Maxwell’s equations are

E(r1, t) =

∫ {
ρ (r2, tr ) r12

r 312
+
ρ̇ (r2, tr ) r12

r 212
− j̇ (r2, tr )

c2r12

}
d3r2

B(r1, t) =
1

c²

∫ {
j (r2, tr )× r12

r 312
+

j̇ (r2, tr )× r12
cr²12

}
d3r2

where ẋ = dx
dt
.

Note that we can always add the solutions of the homogeneous (source-free)
equations, that is, electromagnetic waves.

λ E

B
kk

+q

-q

A nasty fellow:

▶ Retarded time

tr = t −
r12

c
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where ẋ = dx
dt
.

Note that we can always add the solutions of the homogeneous (source-free)
equations, that is, electromagnetic waves.

λ E

B
kk

+q

-q

A nasty fellow:
▶ Retarded time

tr = t −
r12

c

Trond Saue (LCPQ, Toulouse) Relativistic Quantum Chemistry ESQC 2024 24 / 110



Trond Saue (LCPQ, Toulouse) Relativistic Quantum Chemistry ESQC 2024 24 / 110



Trond Saue (LCPQ, Toulouse) Relativistic Quantum Chemistry ESQC 2024 24 / 110



Helmholtz decomposition

Any vector function F (differentiable) who goes to zero faster than
1

r
when r → ∞ can

be expressed as the sum of the gradient of a scalar and the curl of a vector

F(r) = −∇s(r) +∇× v(r)

Longitudinal component (“parallel”):

F∥ = −∇s(r); ∇× F∥ = 0

Solenoidal component (“perpendicular”):

F⊥ = ∇× v(r); ∇ · F⊥ = 0
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Maxwell’s equations: homogeneous pair

∇ · B = 0 means that magnetic fields are always solenoidal

B = B⊥ = ∇× A(r) and B∥ = 0

∇× E+
∂B

∂t
= 0 then becomes ∇×

(
E+

∂A

∂t

)
= 0 and one may write

E+
∂A

∂t
= −∇ϕ(r) ⇒ E = −∇ϕ(r)− ∂A

∂t

The electric field generally has both a longitudinal and solenoidal component

E∥ = −∇ϕ−
∂A∥

∂t
; E⊥ = −∂A⊥

∂t

With the introduction of the scalar potential ϕ and the vector potential A,
the homogeneous pair of Maxwell’s equations is automatically satisfied.
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Maxwell’s equations: homogeneous pair

∇ · E = 4πρ becomes

∇2ϕ+
∂

∂t
(∇ · A) = −4πρ

or

[
∇2 − 1

c2
∂2

∂t2

]
ϕ+

∂

∂t

[
(∇ · A) + 1

c2
∂ϕ

∂t

]
= −4πρ

∇× B− 1

c2
∂E

∂t
=

4π

c2
j becomes[

∇2 − 1

c2
∂2

∂t2

]
A−∇

[
(∇ · A) + 1

c2
∂ϕ

∂t

]
= −4π

c2
j
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Lorentz transformation and 4-vectors

The Lorentz transformation

r∥ = γ
(
r∥ − vt

)
; r⊥ = r⊥; t = γ

(
t − (r · v)

c2

)
is the relativistic transformation between inertial frames.

It involves space and time which can be combined into 4-position: rµ = (r, ict)
whose norm

(
rµrµ = r 2 − c2t2

)
is conserved under Lorentz transformations

Other 4-vectors are

▶ 4-velocity: vµ = γ(v, ic); vµvµ = −c2

▶ 4-momentum: pµ = γ (mv, imc) ; pµpµ = −m2c2

▶ 4-gradient: ∂µ = (∇,−(i/c) ∂
∂t

); ∂µ∂µ = ∇2 −
1

c2
∂2

∂t2
= □2; (d’Alembertian)

▶ 4-potential: Aµ = (A, (i/c)ϕ)
▶ 4-current:: jµ = (j, icρ)

They all transform in the same way !
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Maxwell’s equations: 4-vector notation

We start from:[
∇2 − 1

c2
∂2

∂t2

]
ϕ+

∂

∂t

[
(∇ · A) + 1

c2
∂ϕ

∂t

]
= −4πρ[

∇2 − 1

c2
∂2

∂t2

]
A−∇

[
(∇ · A) + 1

c2
∂ϕ

∂t

]
= −4π

c2
j

This can be written more compactly as

□2ϕ +
∂

∂t
(∂µAµ) = −4πρ

□2A − ∇ (∂µAµ) = −4π

c2
j

; □2 = ∂µ∂µ = ∇2 − 1

c2
∂2

∂t2

.. and finally squashed into

□2Aβ − ∂β(∂αAα) = −4π

c2
jβ
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Gauge transformations

B = ∇× A implies that the longitudinal component A∥ of the vector potential can
be modified without changing B, that is

A → A′ = A+∇χ

However

E = −∇ϕ− ∂A

∂t

implies that a modification of A requires a corresponding modification of the scalar
potential

ϕ → ϕ′ = ϕ− ∂χ

∂t

Lorentz covariant form :

Aµ → A′
µ = Aµ + ∂µχ

The electric and magnetic fields are gauge invariant.
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Lorentz gauge: ∂µAµ = ∇ · A+
1

c2
∂ϕ

∂t
= 0

Maxwell’s equations simplifies to

□2Aβ = −4π

c2
jβ

General solution:

A (r1, t) =

∫
j (r2, tr )

r12
d3r2; ϕ (r1, t) =

∫
ρ (r2, tr )

r12
d3r2

where appears retarded time

tr = t − r12
c
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Coulomb gauge: ∇ · A = 0

Maxwell’s equations simplifies to:

∇2ϕ = −4πρ(
∇2A− 1

c2
∂2A

∂t2

)
−∇ 1

c2
∂ϕ

∂t
= −4π

c2
j

The scalar potential is the solution of the Poisson equation

ϕ(r1, t) =

∫
ρ(r2, t)

r12
d3r2

and describes the instantaneous Coulomb interaction.

Problem (?):

▶ The theory of relativity does not allow instantaneous interactions.

Retardation is hidden in the solution for the purely transversal vector potential

A(r1, t) = A⊥(r1, t) =
4π

c2

∫
j⊥(r2, tr )

r12
d3r2
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Retardation is hidden in the solution for the purely transversal vector potential

A(r1, t) = A⊥(r1, t) =
4π

c2

∫
j⊥(r2, tr )

r12
d3r2
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Particles and fields

Complete Hamiltonian

H = Hparticles + Hinteraction + Hfields

Fields specified:

Non-relativistic limit

(iγµ∂µ −mc)ψ = 0 →
(

p2

2m
− i

∂

∂t

)
ψ = 0

Dirac equation Schrödinger equation

Particles (sources) specified:

Non-relativistic limit

□2Aµ − ∂µ(∂νAν) = −4π

c2
jµ → ???

Maxwell’s equations
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The non-relativistic limit of electrodynamics
T. Saue, Adv. Quantum Chem., 48 (2005) 383

∇ · B = 0 ∇ · B = 0

∇× E+
∂B

∂t
= 0 c → ∞ ∇× E = 0

∇ · E = 4πρ ⇒ ∇ · E = 4πρ

∇× B− 1

c2
∂E

∂t
=

4π

c2
j ∇× B = 0

In the strict non-relativistic limit there are no magnetic fields
and no effects of retardation !

The Coulomb gauge bears its name because it singles out the instantaneous
Coulomb interaction, which constitutes the proper non-relativistic limit of
electrodynamics and which is the most important interaction in chemistry.

All retardation effects as well as magnetic interactions are to be considered
corrections of a perturbation series of the total interaction (in 1/c2).
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The old Masters knew

P. A. M. Dirac, Proc. Roy. Soc. A 123 (1929) 714

W. Heisenberg: The Physical principles of the quantum

theory (1930)
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Scalar relativistic effects

in chemistry
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Relativistic effects in chemistry

The Lorentz factor

γ =
1√

1− v 2/c2
;

{
v - speed of particle

c - speed of light

is a diagnostic of relativistic effects.

The speed of light is very large !

c = 299, 792, 458m/s = 1079252848.8 km/h

So what goes fast in an atom or a molecule ?
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Scalar-relativstic effects: hydrogen-like atoms

In atomic units the average speed of the 1s electron is
equal to the nuclear charge

v1s = Z a.u. and c = 137.0359998 a.u.

The relativistic mass increase of the 1s electron is thus
determined by the nuclear charge

m = γme =
me√

1− Z 2/c2

The Bohr radius is inversely proportional to electron mass

a0 =
4πε0ℏ2

m

Relativity will contract orbitals of one-electron atoms, e.g.

▶ Au78+: Z/c = 58%
▶ 18% relativistic contraction of the 1s orbital
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Scalar-relativistic effects: many-electron atoms

The effect of the other electrons is effectively to screen the nuclear charge:

The relativistic contraction of orbitals will increase screening of nuclear charge and
thus indirectly favor orbital expansion.

In practice we find:

▶ s, p orbitals : contraction
▶ d , f orbitals : expansion
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The colour of gold

The colours of silver and gold can
be traced back to the energy
difference between the (n− 1)d and
ns orbitals in the atom. For silver
this transition is in the ultraviolet,
giving the metallic luster. For gold
it is in the visible, but only when
relativistic effects are included.
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Metal-water interaction
C. Gourlaouen, J.-P. Piquemal, T. Saue and O. Parisel, J. Comp. Chem. 27 (2006) 142

[Ag(H2O)]+:
electrostatic interaction

bonding dominated by charge-dipole
interaction

[Au(H2O)]+:
orbital interaction

relativistic stabilisation of the Au 6s orbital
induces charge transfer and covalent bonding
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Two contrasting neighbours: gold and mercury
L. J. Norrby, J. Chem. Ed. 68 (1991) 110

1064◦C Mp. -39◦C
12.5 kJ/mol ∆Hfus 2.29 kJ/mol
9.29 J/Kmol ∆Sfus 9.81 J/Kmol
19.32 g/cm3 ρ 13.53 g/cm3

426 kS/m Conductivity 10.4 kS/m
dimer Gas phase monomer

[Xe]4f145d106s1 [Xe]4f145d106s2

pseudo halogen pseudo noble gas
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The low-temperature melting of mercury is a relativistic effect
Florent Calvo, Elke Pahl, Michael Wormit and Peter Schwerdtfeger, Ang. Chemie. Int. Ed. 52 (2013) 7583

Mercury melts at 234.32 K (-38.83 ◦C)
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Cars start due to relativity
R. Ahuja, A. Blomqvist, P. Pyykkö and P. Zaleski-Ejgjerd, Phys. Rev. Lett. 106 (2011) 018301

Cathode reaction: Pb (s) + HSO4
– (aq) −−→ PbSO4 (s) + H+ (aq) + 2 e–

Anode reaction: PbO2 (s) + HSO4
– (aq) + 3H+ (aq) + 2 e– −−→ PbSO4 (s) + 2H2O (l)

Total reaction: Pb (s) + PbO2 (s) + 2H2SO4 (aq) −−→ 2PbSO4 (s) + 2H2O (l)

Cell potential: E 0

cell = −∆G0

nF
≈ −∆H (0K)

nF

non-relativistic calculation: +0.39 V
relativistic calculation: +2.13 V
experiment: +2.11 V
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Spin-orbit interaction
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Spin-orbit interaction
a much misunderstood interaction !

Often seen formula:

hso =
1

2m2c2
s · [(∇V )× p]

V = − Z
r

→
Z

2m2c2r 3
s · l

The spin-orbit interaction is not the interaction between spin and angular
momentum of an electron.

An electron moving alone in space is subject to no spin-orbit interaction !

The basic mechanism of the spin-orbit interaction is magnetic induction:

▶ An electron which moves in a molecular field will feel a magnetic field in its rest frame,
in addition to an electric field.

▶ The spin-orbit term describes the interaction of the spin of the electron with this
magnetic field due to the relative motion of other charges.

This operator couples the degrees of freedom associated with spin and space and
therefore makes it impossible to treat spin and spatial symmetry separately.
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Spin-orbit interaction couples spin and space.

Example: I+2 (open-shell)
C. van Wüllen, J. Comput. Chem. 23 (2002) 779

Energy:≡ 0Eh

Energy:= +0.001469972Eh

These are DFT calculations using collinear magnetization: s = mz = ρα − ρβ

Spin magnetization : m =
∑

i ψ
†
i σψi

A solution is to use non-collinear magnetization: s = |m|
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Spin-orbit interaction in atoms

Without spin-orbit interaction the orbital angular momentum and spin of orbitals are
decoupled and can be specified separately

(l ,ml) ∪ (s,ms)

With spin-orbit interaction only the total angular momentum is conserved

j = l+ s; j = |l − s| , . . . , l + s

Orbitals are accordingly characterized by quantum numbers j and mj

ĵ2 |j ,mj⟩ = ℏ2j (j + 1) |j ,mj⟩ ; ĵz |j ,mj⟩ = ℏmj |j ,mj⟩

p

p3/2

p1/2

d

d5/2

d3/2

f

f7/2

f5/2
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Example: the oxygen atom

Without spin-orbit coupling atomic electronic states are specified as 2S+1L,
with the notation S , P, D, . . . for L = 0, 1, 2, . . ..

The ground state configuration of oxygen is 1s22s22p4 which in a non-relativistic
framework (LS-coupling) gives rise to three states:

Term L S Possible J values
3P 1 1 2,1,0
1D 2 0 2
1S 0 0 0

The actual energy levels are

Term J Level (cm−1)
3P 2 0.000

1 158.265
0 226.977

1D 2 15867.862
1S 0 33792.583

http://physics.nist.gov/PhysRefData/Handbook/Tables/oxygentable1.htm
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Spin-orbit splitting in group 8

Term J Oxygen Sulfur Selenium Tellurium Polonium
3P 2 0.000 0.000 0.000 0.00 0.00

1 158.265 396.055 1989.497 4706.500 7514.69
0 226.977 573.640 2534.360 4750.712 16831.61

1D 2 15867.862 9238.609 9576.149 10557.877 21679.11
1S 0 33792.583 22179.954 22446.202 23198.392

For light atoms the fine structure approximately satisfies Landé’s interval rule

∆E
(
J, J ′) = ESO (LSJ)− ESO

(
LSJ ′) = 1

2
ζ(2S+1L)

[
J (J + 1)− J ′ (J ′ + 1

)]
...which for neighbour levels reads

∆E (J, J − 1) = ζ(2S+1L) · J

For heavier atoms the interval rule breaks down because of coupling between
different LS terms as well as change in the spatial extent of radial parts between
spin-orbit components.
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Atomic oxygen emissions in northern lights

Transition Wavelength(Å) Type Lifetime(s)

Green line 1S0 → 1D2 5577 E2 0.75
Red line 1D2 → 3P2 6300 M1 110
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Molecular oxygen: the spinfree picture

In the absence of spin-orbit interaction, molecular states are denoted 2S+1Λ, with
Λ = |ML|.

Ground-state electron configuration: [core]2σ2
g1π

4
u2π

2
g ⇒

(
4
2

)
= 6

micro-states

▶ Electronic states: 3Σ, 1Σ, 1∆

All states are gerade: g × g = g .
Σ-states are further characterized by reflection in planes containing the molecular
axis:

▶ π+ ↔ π−

▶ We make the following table:
1Σg :

1√
2
(αβ − βα) × 1√

2
(π+π− + π−π+) → 1Σ+

g

3Σg :
1√
2
(αβ + βα) × 1√

2
(π+π− − π−π+) → 3Σ−

g
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Molecular oxygen: adding spin-orbit interaction

In the absence of spin-orbit interaction, molecular states are denoted 2S+1Λ, with
Λ = |ML|

Term Te(cm
−1)

X3Σ−
g 0.0

a1∆g 7918.1

b1Σ+
g 13195.1

http://webbook.nist.gov/chemistry/

In the presence of spin-orbit interaction, molecular states are characterized by
Ω = |ML +MS |.
Reflection symmetry: We now have to consider spin and spatial symmetry combined

▶ Singlets are totally symmetric; triplets transform as rotations.
▶ We obtain:

3Σ−
g : 1

2
(π+π− − π−π+) (αβ + βα) → 0+g

1Σ+
g :

1
2
(π+π− + π−π+) (αβ − βα) → 0+g

The ground state of the oxygen molecule is a triplet.

▶ It is split by spin-orbit interaction into 0+g and 1g (zero-field splitting).
▶ A magnetic interaction such as spin-orbit interaction is required for interaction with

singlet states.
▶ This is crucial for life !
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▶ A magnetic interaction such as spin-orbit interaction is required for interaction with

singlet states.

▶ This is crucial for life !
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Chalcogen dimers: zero-field splitting

Oxygen dimer:

Term Te(cm
−1)

X3Σ−
g 0.0

a1∆g 7918.1

b1Σ+
g 13195.1

http://webbook.nist.gov/chemistry/

Zero-field splitting:

▶ O2 : 0.156 cm−1

▶ S2 : 23.5 cm−1

▶ Se2 : 510.0 cm−1

▶ Te2 : 1974.9 cm−1

▶ Po2 : ∼ 7000 cm−1
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Relativistic effects: valence orbital energies (Eh) of the uranium atom

Scalar relativistic effects (SR): relativistic mass increase of the electron

Spin-orbit effects (SO): the interaction of the electron spin with the magnetic field
induced by charges (e.g. nuclei and other electrons) in relative motion
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Summary so far

Relativistic effects are important for heavy elements (Z>40). We distinguish
between:

▶ scalar relativistic effects are associated with the relativistic mass increase of the
electron

γ =
1√

1− v2

c2

; c = 137.0359998 a.u.; One-electron atom: v1s = Z a.u.

and modifies size and energetics of orbitals
▶ spin-orbit interaction is due to magnetic induction and modifies energy levels and

allowed transitions

Since relativistic effects are most pronounced in the core region, a straightforward
and widely used way to introduce relativity in quantum chemical calculations is to
replace the core orbitals by an effective potential, leading to the pseudopotential
approach.

In the following we shall, however, first look at Hamiltonians derived directly from
the Dirac equation.
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Wolfgang Pauli and 137

Wolfgang Pauli (1900-1958)

Throughout his life, Pauli was preoccupied

with the question of why the fine structure

constant, a dimensionless fundamental

constant, has a value nearly equal to 1/137.
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Wolfgang Pauli and 137

Wolfgang Pauli (1900-1958)

In 1958, Pauli fell ill with pancreatic

cancer. When his last assistant, Charles

Enz, visited him at the Rotkreuz hospital in

Zurich, Pauli asked him: “Did you see the

room number?” It was number 137. Pauli

died in that room on December 15, 1958.
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The Old and the New Testament

Handbuch der Physik (1926): The Old Testament

Handbuch der Physik (1933): The New Testament
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Theoretical model chemistries

The electronic Hamiltonian, relativistic or not, has the same generic form

Ĥ = VNN +
∑
i

ĥ(i) + 1
2

∑
i ̸=j

ĝ(i , j); VNN = 1
2

∑
K ̸=L

ZKZL
RKL

Computational cost: xNy
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Constructing the relativistic Hamiltonian
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The non-relativistic electronic Hamiltonian

Ĥ = VNN +
∑
i

ĥ(i) + 1
2

∑
i ̸=j

ĝ(i , j); VNN = 1
2

∑
K ̸=L

ZKZL
RKL

One- and two-electron operators:

ĥ = ĥ0 + v̂eN ; ĝ (1, 2) =
1

r12

Quantization:

E → i
∂

∂t
; p → p̂ = −i∇

Wave equation for non-relativistic free particle:

E =
1

2
mv 2 =

p2

2m
; → i

∂

∂t
ψ =

p̂2

2m
ψ = ĥ0ψ
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ĥ = ĥ0 + v̂eN ; ĝ (1, 2) =
1

r12

Quantization:

E → i
∂

∂t
; p → p̂ = −i∇

Wave equation for non-relativistic free particle:

E =
1

2
mv 2 =

p2

2m
; → i

∂

∂t
ψ =

p̂2

2m
ψ = ĥ0ψ
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Relativistic free particle: classical mechanics

Relativistic free-particle

E = ±
√

m2c4 + c2p2 ∈
〈
−∞,−mc2

∣∣ ∪ ∣∣+mc2,+∞
〉

Classical particles can only change energy continuously,
so we can exclude the negative-energy branch

Connecting to the non-relativistic expression

E = +mc2
√

1 +
( p

mc

)2
= mc2 +

p2

2m
−

p4

8m3c2
+ . . .

The first term explodes in the non-relativistic limit (c → ∞),
but can be avoided by aligning the relativistic energy scale
with the non-relativistic one

E → E −mc2

(only works for positive-energy branch)
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Dirac equation for a relativistic free particle

Dirac equation (
h0 − i

∂

∂t

)
ψ = 0

with relativistic free-particle Hamiltonian

ĥ0 = βmc2 + c (α · p) =
[

+mc2 c (σ · p)
c (σ · p) −mc2

]

The solutions are 4-component vector functions

ψ =

[
ψL

ψS

]
=


ψLα

ψLβ

ψSα

ψSβ


Why four components ?
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ĥ0 = βmc2 + c (α · p) =
[

+mc2 c (σ · p)
c (σ · p) −mc2

]
The solutions are 4-component vector functions

ψ =

[
ψL

ψS

]
=


ψLα

ψLβ

ψSα

ψSβ



Why four components ?

Trond Saue (LCPQ, Toulouse) Relativistic Quantum Chemistry ESQC 2024 60 / 110



Dirac equation for a relativistic free particle

Dirac equation (
h0 − i

∂

∂t

)
ψ = 0

with relativistic free-particle Hamiltonian
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Adding electromagnetic fields:
The principle of minimal electromagnetic coupling
(M. Gell-Mann, Nuovo Cimento Suppl. 4 (1956) 848)

The Hamiltonian of a particle interacting with external fields is obtained from the
free-particle Hamiltonian through the substitutions:

pµ → pµ − qAµ ⇒ Electron: q = −e ⇒
p → p+ eA

E → E + eϕ

The coupling of particle and field is minimal
because it involves only the charge of the particle.

The complete Dirac Hamiltonian reads

ĥD = β′mc2 + c (α · π)− eϕ =

[
−eϕ c (σ · π)

c (σ · π) −2mc2 − eϕ

]
where appears the mechanical momentum π = p+ eA

Energy shift: β → β′ −mc2 ⇒ E → E ′ = E −mc2
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Negative-energy solutions

Classical mechanics does not allow energy discontinuities,
and so one may reject the negative-energy solutions.

In quantum mechanics, these solutions are problematic
because there is always a finite transition probability.

▶ It can be shown that the hydrogen atom would not be
stable and would disintegrate in 10−9 s.

▶ The electron descending down the negative-energy band
would cause an ultraviolet catastrophe.
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Electron-positron pair creation

The solution proposed by Dirac

All negative-energy solutions are occupied.

The Pauli exclusion principle then hinder
electrons descending down the negative-energy
branch.

The excitation of an electron from the
negative-energy band leaves a hole of positive
charge, corresponding to the creation of a
electron-positron pair.

The theory of Dirac is confirmed in 1932 when the
US physicist Carl Anderson discover the positron.
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Charge conjugation symmetry

Introduction of fields require specification of charge.

For q = −e, all solutions, of both positive and negative energy, are electronic.

For q = +e, all solutions are positronic.

Solutions of opposite charge are related by charge conjugation symmetry.

Trond Saue (LCPQ, Toulouse) Relativistic Quantum Chemistry ESQC 2024 64 / 110



Charge conjugation symmetry

Introduction of fields require specification of charge.

For q = −e, all solutions, of both positive and negative energy, are electronic.

For q = +e, all solutions are positronic.

Solutions of opposite charge are related by charge conjugation symmetry.

Trond Saue (LCPQ, Toulouse) Relativistic Quantum Chemistry ESQC 2024 64 / 110



Charge conjugation symmetry

Introduction of fields require specification of charge.

For q = −e, all solutions, of both positive and negative energy, are electronic.

For q = +e, all solutions are positronic.

Solutions of opposite charge are related by charge conjugation symmetry.

Trond Saue (LCPQ, Toulouse) Relativistic Quantum Chemistry ESQC 2024 64 / 110



Charge conjugation symmetry

Introduction of fields require specification of charge.

For q = −e, all solutions, of both positive and negative energy, are electronic.

For q = +e, all solutions are positronic.

Solutions of opposite charge are related by charge conjugation symmetry.

Trond Saue (LCPQ, Toulouse) Relativistic Quantum Chemistry ESQC 2024 64 / 110



Constants of motion

Heisenberg’s equation:

d⟨Ψ|Â|Ψ⟩
dt

= −i⟨Ψ|[Â, Ĥ]|Ψ⟩+ ⟨Ψ|∂Â
∂t

|Ψ⟩

Constant of motion:
d⟨Ψ|Â|Ψ⟩

dt
= 0

Free particle : conservation of (linear) momentum[
p, ĥNR

0

]
= 0 =

[
p, ĥR

0

]
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d⟨Ψ|Â|Ψ⟩
dt
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Spin and angular momentum

Non-relativistic free particle:[
ℓ, ĥNR0

]
= i

m
(p× p) = 0[

s, ĥNR0

]
= 0

Relativistic free particle: [
ℓ, ĥR0

]
= i (cα× p) ̸= 0[

Σ, ĥR0

]
= −2i (cα× p) ̸= 0

The relativistic free-particle Hamiltonian commutes with total angular momentum
j = ℓ+ 1

2
Σ and carries spin.

The economy of Nature’s laws.
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Non-relativistic Hamiltonian in external fields

Minimal substitution gives

hNR0 =
p̂2

2m
→ hNR =

π̂2

2m
− eϕ =

p̂2

2m
+

e

2m
[p̂ · A+ A · p̂] +

e2A2

2m
− eϕ

▶ no spin interactions

The Dirac identity
(σ · A) (σ · B) = A · B+ iσ · (A× B)

A special case
(σ · p̂) (σ · p̂) = p̂2

suggests that spin is “hidden” in the non-relativistic operator.

Minimal substitution then gives

hNR
0 =

(σ · p̂)2

2m
→ hNR =

(σ · π̂)2

2m
− eϕ

=
p̂2

2m
+

e

2m
[p̂ · A+ A · p̂] +

e2A2

2m
+

e

2m
(σ · B)− eϕ

Is spin a relativistic effect ?
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Charge and current density

The coupling of particles and fields is relativistic

⟨ĥint⟩ =
∫

[ρ(r, t)ϕ(r, t)− j(r, t) · A(r, t)] d3r = −
∫

jµAµd
3r

.. and allows us to extract charge and current density

ρR =
δ⟨ĥint⟩
δϕ

= ψ†(r) {−eI4}︸ ︷︷ ︸
density operator

ψ(r); jR = −δ⟨ĥint⟩
δA

= ψ†(r) {−ecα}︸ ︷︷ ︸
current operator

ψ(r)

The corresponding non-relativistic expressions are

ρNR = −eψ†(r)ψ(r)

jNR = − e

2m

{
ψ†(r)p̂ψ(r)− ψT (r)p̂ψ∗(r)

}
− e2

2m
ψ†(r)Aψ(r)

− e

2m
∇× ψ†(r)σψ(r)

▶ The expression for current density is clearly more complicated.
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⟨ĥint⟩ =
∫

[ρ(r, t)ϕ(r, t)− j(r, t) · A(r, t)] d3r = −
∫

jµAµd
3r

.. and allows us to extract charge and current density

ρR =
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Velocity operators

Consider the non-relativistic and relativistic velocity operators obtained by the
Heisenberg equation of motion

dr

dt
= −i

[
r, ĥNR

]
= −i

[
r,

p̂2

2m

]
=

p̂

m

dr

dt
= −i

[
r, ĥR

]
= cα

The curious form of the relativistic velocity operator is due to Zitterbewegung,
to be explained later.
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(Number) density of iodobenzene

ρR = ρL + ρS

(isosurface 0.01)

(isosurface 0.0001)
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(Number) density of iodobenzene

(molecular plane)

(molecular plane ±1a0)
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(Number) density of iodobenzene

(molecular plane) (molecular plane ±1a0)
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Two-electron interaction

General form:
g(1, 2) = q1ϕ2 − q1v1 · A2

Coulomb gauge:

ϕ(r1, t) =

∫
ρ(r2, t)

r12
d3r2; A(r1, t) = A⊥(r1, t) =

4π

c2

∫
j⊥(r2, tr )

r12
d3r2

Quantification and truncation

ĝ(1, 2) =
1

r12
−

cαi · cαj

c²r12︸ ︷︷ ︸
Gaunt

+
(cα1 ·∇1) (cα2 ·∇2) r12

2c2


︸ ︷︷ ︸

Breit

+O(c−2)
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4-component relativistic Hamiltonian

Generic form of electronic Hamiltonian:

H = VNN +
∑
i

h (i) +
1

2

∑
i ̸=j

g (i , j) ; h(i) = h0 + VeN

One-electron operator: Dirac operator in the molecular field

ĥD(i) = β′
imc2 + c (αi · pi ) + V̂eN ;

▶ where we have introduced β′ = β − 1 to align with the non-relativistic energy scale

Two-electron operator: (Coulomb gauge)

ĝ(i , j) =
1

rij

− cαi · cαj

c2rij
− (cαi ·∇i ) (cαj ·∇j) rij

2c2

+ . . .
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2-component relativistic Hamiltonians

Starting from the Dirac equation in a molecular field[
V c (σ · p)

c (σ · p) V − 2mc2

] [
ψL

ψS

]
=

[
ψL

ψS

]
E

we would like to generate a 2-component Hamiltonian h++ which reproduces the
positive-energy spectrum of the parent Hamiltonian.

This can be accomplished by a unitary block diagonalization
L. L. Foldy, S. A. Wouthuysen, Phys. Rev. 78 (1950) 29

U†
[

hLL hLS
hSL hSS

]
U =

[
h++ 0
0 h−−

]

▶ or, equivalently, by elimination of the small components followed by renormalization
of the transformed large components.

The transformation can be expressed as
J.-L. Heully, I. Lindgren, E. Lindroth, A.-M. Mårtensson-Pendrill, Phys. Rev. A 33 (1986) 4426;

W. Kutzelnigg in Relativistic Electronic Structure Theory. Part 1. Fundamentals, (Ed.: P. Schwerdtfeger), Elsevier,

Amsterdam, 2002, p. 66

U = W1W2; W1 =

[
1 −R†

R 1

]
; W2 =

[
Ω+ 0
0 Ω−

]
;

Ω+ =
(
1 + R†R

)−1/2

Ω− =
(
1 + RR†)−1/2
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Decoupling transformation

We have seen that the decoupling transformation is given by

U = W1W2 =

[
Ω+ −R†Ω−
RΩ+ Ω−

]

The identification of the operator R becomes clear when considering the effect of
the Foldy-Wouthuysen transformation on the orbitals

Û†
[
ψL

ψS

]
=

[
Ω+

(
ψL + R†ψS

)
Ω−
(
ψS − RψL

) ]
For the positive energy solutions we want the lower component to be zero, thus
implying

ψS
+ = RψL

+

The 2-component positive-energy solutions take the form

ψ+ =
1√

1 + R†R

(
ψL + R†ψS

)
=

1√
1 + R†R

(
ψL + R†RψL

)
=
√

1 + R†RψL
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Approximate 2-component relativistic Hamiltonians in one step

The exact decoupling requires in principle to solve the Dirac equation

R =
(
2mc2 − V + E

)−1

c (σ · p)

One-step procedures:

▶ Using the approximate decoupling

R =
1

2mc

[
1 +

E − V

2mc2

]−1

(σ · p) ∼
1

2mc
(σ · p)

and retaining terms only to O(c−2) gives the Pauli Hamiltonian.
▶ Using the approximate decoupling (regular approximation)

R =
c

2mc2 − V

[
1 +

E

2mc2 − V

]−1

(σ · p) ∼
c

2mc2 − V
(σ · p)

without/with renormalization gives the ZORA/IORA Hamiltonians.
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Pauli Hamiltonian

The Pauli Hamiltonian is based on an approximative decoupling of the large and
small components

R =
(
2mc2 − V + E

)−1

c (σ · p) = 1

2mc

[
1 +

E − V

2mc2

]−1

(σ · p) ∼ 1

2mc
(σ · p)

Applying the unitary transformation and retaining terms only to O(c−2)gives the
Pauli Hamiltonian

ĥPauli = V + T − p4

8m3c2︸ ︷︷ ︸
mass-velocity

+
1

8m2c2

(
∇2V

)
︸ ︷︷ ︸

Darwin

+
1

4m2c2
σ · [(∇V )× p]︸ ︷︷ ︸

spin-orbit

Let us investigate the physics it contains !
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Mass-velocity term

Relativistic mass correction

E = mc2
√

1 +
p2

m2c2
= mc2︸︷︷︸

rest mass

+
p2

2m
− p4

8m3c4
+ . . .︸ ︷︷ ︸

kinetic energy

Problem: The mass-velocity term has no lower bound.

▶ The Pauli-Hamiltonian can not be used in variational calculations.
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Darwin term

ĥDarwin =
1

8m2c2

(
∇2V

)
=

−e

8m2c2

(
∇2ϕ

)

The origin of the Darwin term is Zitterbewegung,
an oscillatory motion of the electron.

Assume that the electron has a rapid oscillatory motion δ
about the average position r.

▶ The instantaneous Coulomb interaction is modified

−eϕ(r) → −eϕ(r + δ)

▶ We perform a Taylor expansion

ϕ(r + δ) = ϕ(r) + (δ ·∇)ϕ(r) +
1

2
(δ ·∇)2 ϕ(r) + . . .
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Darwin term cont’d

We consider the time average of the interaction

−e ⟨ϕ(r + δ)⟩T = −eϕ(r)− e ⟨(δ ·∇)⟩T ϕ(r)−
1

2
e
〈
(δ ·∇)2

〉
T
ϕ(r) + . . .

= −eϕ(r)− e

〈
δ2
〉
T

6
∇2ϕ(r)+

We make the identification〈
δ2
〉
T
=

3

4m2c2
; ⇒ δx = δy = δz =

1

2mc

▶ which gives the Darwin term

ĥDarwin =
−e

8m2c2

(
∇2ϕ

)
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ĥDarwin =
−e

8m2c2

(
∇2ϕ

)

Trond Saue (LCPQ, Toulouse) Relativistic Quantum Chemistry ESQC 2024 80 / 110



What is Zitterbewegung ?

One interpretation is that in the vicinity of an
electron its field is sufficiently strong to allow
the creation of a electron-positron pair.

The positron annihilates the original electron
and the“new”electron takes over.

Consider the energy-time uncertainity relation

∆E∆t ≥ 1

The creation of an electron-positron pair
requires at least 2mc2 from which we obtain

∆t ≈ 1

2mc2

In this time a particle can move a maximum
distance of

∆x ≈ 1

2mc
!
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Spin-orbit interaction

Spin-orbit interaction term of the Pauli Hamiltonian

hso =
1

2m2c2
s · [(∇V )× p]

V = − Z
r

→
Z

2m2c2r 3
s · l

Digression: Dirac-Coulomb Hamiltonian

Ĥ = VNN +
∑
i

{
βimc2 + c (αi · pi ) + VeN(i)

}
+

1

2

∑
i ̸=j

1

rij

Where is the spin-orbit interaction operator (∼ s · l) ???

▶ There is no explicit operator since
the electronic Hamiltonian is formulated in the nuclear frame.
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2

∑
i ̸=j

1

rij

Where is the spin-orbit interaction operator (∼ s · l) ???
▶ There is no explicit operator since

the electronic Hamiltonian is formulated in the nuclear frame.
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Spin-orbit interaction is magnetic induction

By insisting on Coulomb gauge ϕ =
Z

r
in all reference frames.
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Spin-orbit interaction with other electrons

By insisting on Coulomb gauge ϕ =
1

r12
in all reference frames.

Spin-same-orbit (SSO) interaction arises from the Coulomb term.
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Spin-orbit interaction with other electrons

By insisting on Coulomb gauge ϕ =
1

r12
in all reference frames.

Spin-other-orbit (SOO) interaction arises from the Gaunt term.

The spin-orbit interaction with nuclei is of type spin-own orbit
in the Born-Oppenheimer approximation.
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The ZORA Hamiltonian

The ZORA Hamiltonian is based on an approximative decoupling of the large and
small components

R =
c

2mc2 − V

[
1 +

E

2mc2 − V

]−1

(σ · p) ∼ c

2mc2 − V
(σ · p)

Zeroth-Order Regular Approximation (ZORA)
[renormalization terms ignored]:

ĥZORA = V +
1

2m
(σ · p) 2mc2

2mc2 − V
(σ · p)

▶ The second term can be thought of as an effective kinetic energy operator that goes to
the non-relativistic one when V → 0.

Electric gauge-dependence: (V → V +∆ ⇏ E → E +∆)

▶ Usually fixed by approximating the potential in the denominator by a superposition of
atomic potentials.

Trond Saue (LCPQ, Toulouse) Relativistic Quantum Chemistry ESQC 2024 86 / 110



The ZORA Hamiltonian

The ZORA Hamiltonian is based on an approximative decoupling of the large and
small components

R =
c

2mc2 − V

[
1 +

E

2mc2 − V

]−1

(σ · p) ∼ c

2mc2 − V
(σ · p)

Zeroth-Order Regular Approximation (ZORA)
[renormalization terms ignored]:
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small components

R =
c
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the non-relativistic one when V → 0.

Electric gauge-dependence: (V → V +∆ ⇏ E → E +∆)
▶ Usually fixed by approximating the potential in the denominator by a superposition of

atomic potentials.
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The ZORA Hamiltonian
Missing renormalization

We are solving
ĥZORAφp = εZORA

p φp,

..but should be solving
(NESC: normalized elimination of small components)

ĥZORAϕp =
[
1 + R̂†R̂

]
εIORA
p ϕp.

We introduce the approximate equation

ĥZORAφp =
[
1 + ⟨φp|R̂†R̂|φp⟩

]
ε̃IORA
p φp

This leads to the scaled ZORA approach (only correcting eigenvalues)

εIORA
p ≈ εscZORA

p =
εZORA
p

1 + ⟨φp|R̂†R̂|φp⟩

▶ For one-electron systems the Dirac eigenvalues are reproduced.

Trond Saue (LCPQ, Toulouse) Relativistic Quantum Chemistry ESQC 2024 87 / 110



The ZORA Hamiltonian
Missing renormalization

We are solving
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ĥZORAφp = εZORA

p φp,

..but should be solving
(NESC: normalized elimination of small components)
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Approximate 2-component relativistic Hamiltonians in two steps

Two-step procedures:

▶ 1a) Using the exact free-particle decoupling

R =
c (σ · p)
Ep +mc2

∼ O
(
c−1

)
; Ep =

√
m2c4 + c2p2

provides regularized and variationally stable Hamiltonians,

⋆ but not exact decoupling

ĥ →
[

Ep − mc2 0
0 −Ep − 3mc2

]
+

[
A [V + RVR]A A [R,V ]A
−A [R,V ]A A [V + RVR]A

]

A =
1

√
1 + R†R

=

√
Ep + mc2

2Ep
∼ O

(
c0

)

▶ 2a) Subsequent decoupling transformations in orders of the potential defines
Douglas-Kroll-Hess (DKH) Hamiltonians to given order.

⋆ DKH1 means no further transformation, DKH2 is the standard form.

▶ 2b) Iterating the coupling equation of the free-particle transformed Hamiltonian to
obtain the coupling correct through some odd order 2k − 1 in c−1 and then perform a
single unitary transformation defines the Barysz, Sadlej and Snijders (BSS)
Hamiltonian to order 2k.
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Exact 2-component (X2C) Hamiltonians
M. Iliaš, H. J. Aa. Jensen, V. Kellö, B. O. Roos and M. Urban, Chem. Phys. Lett. 408 (2005) 210;
W. Kutzelnigg and W. Liu, J. Chem. Phys. 123 (2005) 241102; M. Iliaš and T. Saue, J. Chem. Phys. 126
(2007) 064102

Two important realizations:

▶ solving the one-electron problem is cheap compared to the many-electron problem
▶ use matrix algebra

... led to this simple algorithm for exact decoupling:

▶ 1. Solve the Dirac equation on matrix form
▶ 2. Extract the coupling R from the solutions
▶ 3. Construct the transformation matrix U, next hX2C

Advantages:

▶ reproduces exactly the positive-energy spectrum of the Dirac Hamiltonian
▶ all matrix manipulations; no new operators to program
▶ explicit representation of transformation matrix

⋆ any property operator can be transformed on the fly
⋆ no picture change errors
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(2007) 064102

Two important realizations:
▶ solving the one-electron problem is cheap compared to the many-electron problem
▶ use matrix algebra

... led to this simple algorithm for exact decoupling:
▶ 1. Solve the Dirac equation on matrix form
▶ 2. Extract the coupling R from the solutions
▶ 3. Construct the transformation matrix U, next hX2C

Advantages:
▶ reproduces exactly the positive-energy spectrum of the Dirac Hamiltonian
▶ all matrix manipulations; no new operators to program
▶ explicit representation of transformation matrix

⋆ any property operator can be transformed on the fly
⋆ no picture change errors

Trond Saue (LCPQ, Toulouse) Relativistic Quantum Chemistry ESQC 2024 89 / 110



Picture change errors

The 2-component Hamiltonian is obtained as

H2c =
[
U†H4cU

]
++

Property operators Ω4c must be subjected to the
same decoupling transformation as the
Hamiltonian, that is

Ω2c =
[
U†Ω4cU

]
++

Use of the approximate expression

Ω2c ≈
[
Ω4c
]
LL

leads to picture change errors

▶ may be larger than the relativistic effects !

E. J. Baerends, W. H. E. Schwarz, P. Schwerdtfeger and J. G. Snijders, J. Phys. B. 23(1990) 3225; V. Kellö and A. J. Sadlej, Int.
J. Quant. Chem. 68 (1998) 159; M. Pernpointer and P. Schwerdtfeger, Chem. Phys. Lett. 295(1998) 347; V. Kellö and A. J.

Sadlej, Theoret. Chim. Acta 547(2001) 35; J. Seino, W. Uesugi and M. Hada, J. Chem. Phys. 132 (2010) 164108
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An example: the electron density

ρ4c (P) = −e
∑

i ⟨ψ4c
i |δ (r − P)|ψ4c

i ⟩ = −e
∑

i ψ
4c†
i (P)ψ4c

i (P)

ρ2c (P) = −e
∑

i ⟨ψ2c
i |

[
U†δ (r − P)U

]
++

|ψ2c
i ⟩ ̸= −e

∑
i ψ

2c†
i (P)ψ2c

i (P)

∑
i ψ

4c†
i ψ4c

i vs.
∑

i ψ
2c†
i ψ2c

i for the mercury atom
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An example: the electron density

On a“chemical” scale the difference is no longer visible:

However, many molecular properties probe the electron density near nuclei, providing
local information with great sensitivity to the chemical environment,

▶ for instance electric field gradients at nuclei, NMR parameters, molecular gradients and
Mössbauer isomer shifts.
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Numerical example: the uranium atom

DCG DC X2C(AMFI) DKH2 DKH1 ZORA scZORA

1s1/2 -4262.599 -4281.813 -4272.178 -4253.946 -4568.402 -4890.081 -4267.639
2s1/2 -804.292 -806.637 -804.996 -802.931 -840.315 -829.339 -804.400
2p1/2 -773.067 -777.035 -775.649 -774.270 -791.143 -799.722 -775.573
2p3/2 -633.274 -635.783 -635.010 -635.027 -634.978 -651.542 -634.900
3s1/2 -206.265 -206.730 -206.350 -205.894 -214.216 -208.368 -206.214
3p1/2 -192.463 -193.251 -192.949 -192.624 -196.579 -194.945 -192.940
3p3/2 -159.897 -160.378 -160.206 -160.220 -160.067 -161.622 -160.178
3d3/2 -138.721 -139.070 -138.997 -139.024 -138.568 -140.214 -138.982
3d5/2 -132.183 -132.426 -132.367 -132.393 -131.938 -133.477 -132.350
4s1/2 -54.250 -54.355 -54.259 -54.140 -56.332 -54.425 -54.223
4p1/2 -48.048 -48.232 -48.161 -48.077 -49.085 -48.334 -48.159
4p3/2 -39.454 -39.554 -39.515 -39.522 -39.437 -39.633 -39.508
4d3/2 -29.688 -29.744 -29.734 -29.743 -29.590 -29.817 -29.730
4d5/2 -28.100 -28.130 -28.123 -28.132 -27.980 -28.197 -28.119
4f5/2 -15.207 -15.202 -15.211 -15.220 -15.089 -15.247 -15.210
4f7/2 -14.802 -14.786 -14.795 -14.803 -14.676 -14.828 -14.792
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Numerical example: the uranium atom

DCG DC X2C(AMFI) DKH2 DKH1 ZORA scZORA

5s1/2 -12.582 -12.603 -12.582 -12.553 -13.081 -12.587 -12.573
5p1/2 -10.098 -10.136 -10.122 -10.103 -10.320 -10.133 -10.122
5p3/2 -8.077 -8.095 -8.088 -8.091 -8.049 -8.094 -8.087
5d3/2 -4.347 -4.352 -4.353 -4.356 -4.305 -4.356 -4.353
5d5/2 -4.040 -4.041 -4.042 -4.045 -3.995 -4.044 -4.041
5f5/2 -0.350 -0.346 -0.349 -0.350 -0.321 -0.349 -0.349
5f7/2 -0.323 -0.318 -0.321 -0.322 -0.294 -0.321 -0.321
6s1/2 -2.135 -2.139 -2.135 -2.130 -2.234 -2.134 -2.133
6p1/2 -1.338 -1.344 -1.342 -1.339 -1.371 -1.343 -1.342
6p3/2 -0.983 -0.985 -0.984 -0.985 -0.968 -0.984 -0.984
6d3/2 -0.193 -0.193 -0.193 -0.194 -0.181 -0.193 -0.193
6d5/2 -0.183 -0.183 -0.184 -0.184 -0.173 -0.184 -0.184
7s1/2 -0.202 -0.202 -0.202 -0.202 -0.211 -0.202 -0.202
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The uranium atom: spin-orbit splittings

SO DCG DC X2C(AMFI) DKH2 DKH1 ZORA scZORA

2p 139.793 141.252 140.638 139.244 156.165 148.179 140.672
3p 32.565 32.874 32.743 32.404 36.512 33.324 32.762
3d 6.538 6.644 6.630 6.631 6.631 6.737 6.632
4p 8.594 8.678 8.645 8.555 9.648 8.701 8.651
4d 1.588 1.614 1.611 1.611 1.611 1.620 1.612
4f 2.021 2.041 2.034 2.012 2.271 2.038 2.035
5p 0.307 0.312 0.311 0.311 0.310 0.312 0.312
5d 0.307 0.312 0.311 0.311 0.310 0.312 0.312
5f 0.027 0.028 0.028 0.028 0.027 0.028 0.028
6p 0.797 0.795 0.793 0.790 0.862 0.791 0.791
6d 0.009 0.010 0.010 0.010 0.008 0.010 0.010
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Basis set considerations

Villa Casale, Sicily
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The non-relativistic case

Hydrogen atom (bound solutions):

ψnlm (r) = Rnl (r)Yℓm (θ, ϕ) ; Rnl (r) = Nnℓρ
ℓe−ρ/2L2ℓ+1

n−ℓ−1 (ρ) ; ρ =
2r

na0

Slater-type orbitals (STOs)

χSTO
nlm (r) = N r ℓ exp [−ζr ]Yℓm (θ, ϕ)

Gaussian-type orbitals (GTOs)

▶ Spherical-harmonics GTOs:

χGTO
nℓm (r) = N rℓ exp

[
−αr2

]
Yℓm (θ, ϕ)

▶ Cartesian GTOs:

χGTO
ijk (r) = N x iy jzk exp

[
−αr2

]
; i + j + k = ℓ

What about relativistic atomic solutions ?
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The 2-component relativistic case

Hydrogen atom (bound solutions):

ψnjmj (r) = Rnj (r)χj,mj (θ, ϕ) ;

{
ĵ2χj,mj = j (j + 1)χj,mj

ĵzχj,mj = mjχj,mj

where χj,mj are 2-component angular functions.

Spin-orbit splitting: j = ℓ+ s; j = ℓ± 1
2

p

p3/2

p1/2

d

d5/2

d3/2

f

f7/2

f5/2

Parent orbital has well-defined orbital angular momentum ℓ

▶ Suggests that
ℓ̂2χj,mj

= ℓ (ℓ+ 1)χj,mj

▶ such that
χj,mj

= cαYℓmαα+ cβYℓmβ
β

▶ where

mj = mℓ +ms ⇒ mα = mj −
1

2
; mβ = mj +

1

2
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ψnjmj (r) = Rnj (r)χj,mj (θ, ϕ) ;

{
ĵ2χj,mj = j (j + 1)χj,mj

ĵzχj,mj = mjχj,mj

where χj,mj are 2-component angular functions.

Spin-orbit splitting: j = ℓ+ s; j = ℓ± 1
2

p

p3/2

p1/2

d

d5/2

d3/2

f

f7/2

f5/2
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A new quantum number: κ

The 2-component angular functions χj,mj are eigenfunctions of both ĵ2 and ℓ̂2

However

j = ℓ+ s = ℓ+
1

2
σ ⇒ ĵ2 = ℓ̂2 +

1

2

(
σ · ℓ̂

)
+

3

4

We introduce a new angular operator

κ̂ = −
[(

σ · ℓ̂
)
+ 1
]

with convenient eigenvalues

s1/2 p1/2 p3/2 d3/2 d5/2 f5/2 f7/2
κ -1 +1 -2 +2 -3 +3 -4

Associated densities

2(s, p)1/2,1/2 2(p, d)3/2,1/2 2(p, d)3/2,3/2
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The 4-component relativistic case

Hydrogen atom (bound solutions):

ψ =

[
ψL

ψS

]
=

[
RLχκ,mj (θ, ϕ)

iRSχ−κ,mj (θ, ϕ)

]

Radial functions [
RL

RS

]
= N rγ−1e−λr

[
N L [F1 (r) + F2 (r)]
N S [F1 (r)− F2 (r)]

]

▶ where λ = 1
ℏc

√
m2c4 − E2; γ =

√
κ2 − (Zα)2 |κ|

Radial functions with |κ| = 1 have a weak singularity at the origin

▶ serves as a “black hole” in basis set optimizations
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Basis sets for relativistic calculations

Solution: use finite nuclei

▶ Radial functions become gaussian at the origin
▶ Gaussian nuclear charge distribution:

ρG (rn) = ρG0 exp
[
−ηr2n

]
; ρG0 =

Z

(π/η)3/2

▶ The exponent is chosen to satisfy the semi-empirical rule
W. R. Johnson and G. Soff. At. Data Nucl. Data Tables, 33 (1985) 405〈

r2n
〉1/2

=
[
0.836A1/3 + 0.570

]
fm

2-component basis functions

χX (r) = N r ℓ exp
[
−αr 2

]
χκ,nj (θ, ϕ) ; X = L, S

Scalar basis functions: spherical or Cartisian GTOs

▶ Allows the use of non-relativistic integral codes
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Kinetic balance

Pioneer 4c molecular calculation in the 80s showed variational collapse

Ignored the exact coupling of the large and small components

cΨS =
1

2m

[
1 +

E − V

2mc2

]−1

(σ · p)ψL

▶ Modified by the introduction of magnetic fields: p → p+ eA

Modern-day basis sets are generated according to the non-relativistic limit

lim
c→∞

cΨS =
1

2m
(σ · p)ψL

Assumes E ≪ 2mc2

▶ vaild for positive-energy solutions only

Assumes V ≪ 2mc2

▶ non-singular potential; finite nuclei
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Relativistic effective core potentials
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The frozen-core approximation
4-component relativistic Hartree–Fock calculations

Hg: polarizability (Å−3)

1s22s22p63s23p63d104s24p64d104f145s25p65d106s2 6.61
5s25p65d106s2 6.61

5d106s2 6.60
6s2 6.31

Au: ionization potential/electron affinity (eV)

IP EA

1s22s22p63s23p63d104s24p64d104f145s25p65d106s1 7.688 0.581
5s25p65d106s1 7.689 0.580

5d106s1 7.693 0.579
6s1 7.923 0.505

Heavy elements = many electrons !

coronene 176 electrons Pt2
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Philips–Kleinman equation
Valid for a single valence orbital φv outside a closed-shell core {φc}

Hartree–Fock equation

F̂ |φv ⟩ = |φv ⟩εv ; ⟨φv |φc⟩ = 0, ∀φc

We introduce a pseudo-valence orbital

|χv ⟩ = |φv ⟩+
∑
c

|φc⟩acv ; acv = ⟨φc |χv ⟩

and set up a new Hartree–Fock equation

F̂ |χv ⟩ = |φv ⟩εv +
∑
c

|φc⟩acvεc

+
∑
c

|φc⟩acvεv −
∑
c

|φc⟩⟨φc |χv ⟩εv

This can be rearranged to(
F̂ +

∑
c

(εv − εc) |φc⟩⟨φc |

)
|χv ⟩ = |χv ⟩εv

Further manipulation gives(
F̂v + VPP

)
|χv ⟩ = |χv ⟩εv ; VPP = F̂c +

∑
c

(εv − εc) |φc⟩⟨φc |
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Effective core potentials

Model core potentials: Valence orbitals with full nodal structure

VMCP =
∑
A

{∑
k

Ak r
nk
iA e−αk r

2
i +

∑
b

Bc |φA;c⟩⟨φA;c |

}

▶ Can be combined with relativistic Hamiltonians
▶ Moderate basis set reduction

Pseudopotentials: Nodeless pseudo-valence orbitals

▶ Relativistic Hamiltonians can not be used since they in particular probe the core region

⋆ Relativistic effects enter through parametrization

▶ Significant basis set reduction
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Semi-local pseudopotentials

Valence-only electronic Hamiltonian

Hv =

nv∑
i

[
−1

2
∇2

i +
∑
A

(
VPP;A (riA)−

QA

riA

)]
+

1

2

nv∑
i ̸=j

1

rij
+

1

2

∑
A̸=B

QAQB

RAB

▶ Core charges: QA = ZA − nAC

Semi-local pseudopotential

VPP;A (riA) = Ṽlocal (riA) +

ℓmax∑
ℓ=0

Ṽℓ (riA)
ℓ∑

mℓ=−ℓ

|ℓmℓ⟩⟨ℓmℓ|

Ṽ (r) =
∑
k

Ak r
nk exp

[
−αk r

2
]

How do we determine parameters {Ak , αk , nk} ?
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VPP;A (riA) = Ṽlocal (riA) +

ℓmax∑
ℓ=0
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Pseudopotential parametrization

Energy-consistent pseudopotentials:
(Preuss, Stoll, Dolg, Schwerdtfeger.....)

▶ Semi-empirical vs. ab initio

Shape-consistent pseudopotentials:
(Hay, Wadt, Christiansen, Ermler, Cundari, Stevens....)

▶ Pseudovalence orbital

Rp (r) =

{
Rv (r) ; r ≥ rc
f (r) ; r < rc

▶ VPP is then found by inversion of radial equation for the pseudovalence orbital

(
F̂v (r) + VPP

)
Rp (r) = Rp (r) εv ⇒ VPP (r) =

(
εv − F̂v (r)

)
Rp (r)

Rp (r)

Trond Saue (LCPQ, Toulouse) Relativistic Quantum Chemistry ESQC 2024 107 / 110



Pseudopotential parametrization

Energy-consistent pseudopotentials:
(Preuss, Stoll, Dolg, Schwerdtfeger.....)

▶ Semi-empirical vs. ab initio

Shape-consistent pseudopotentials:
(Hay, Wadt, Christiansen, Ermler, Cundari, Stevens....)

▶ Pseudovalence orbital

Rp (r) =

{
Rv (r) ; r ≥ rc
f (r) ; r < rc

▶ VPP is then found by inversion of radial equation for the pseudovalence orbital

(
F̂v (r) + VPP

)
Rp (r) = Rp (r) εv ⇒ VPP (r) =

(
εv − F̂v (r)

)
Rp (r)

Rp (r)

Trond Saue (LCPQ, Toulouse) Relativistic Quantum Chemistry ESQC 2024 107 / 110



Pseudopotential parametrization

Energy-consistent pseudopotentials:
(Preuss, Stoll, Dolg, Schwerdtfeger.....)

▶ Semi-empirical vs. ab initio

Shape-consistent pseudopotentials:
(Hay, Wadt, Christiansen, Ermler, Cundari, Stevens....)

▶ Pseudovalence orbital

Rp (r) =

{
Rv (r) ; r ≥ rc
f (r) ; r < rc

▶ VPP is then found by inversion of radial equation for the pseudovalence orbital

(
F̂v (r) + VPP

)
Rp (r) = Rp (r) εv ⇒ VPP (r) =

(
εv − F̂v (r)

)
Rp (r)

Rp (r)

Trond Saue (LCPQ, Toulouse) Relativistic Quantum Chemistry ESQC 2024 107 / 110



Pseudopotential parametrization

Energy-consistent pseudopotentials:
(Preuss, Stoll, Dolg, Schwerdtfeger.....)

▶ Semi-empirical vs. ab initio

Shape-consistent pseudopotentials:
(Hay, Wadt, Christiansen, Ermler, Cundari, Stevens....)

▶ Pseudovalence orbital

Rp (r) =

{
Rv (r) ; r ≥ rc
f (r) ; r < rc

▶ VPP is then found by inversion of radial equation for the pseudovalence orbital

(
F̂v (r) + VPP

)
Rp (r) = Rp (r) εv ⇒ VPP (r) =

(
εv − F̂v (r)

)
Rp (r)

Rp (r)

Trond Saue (LCPQ, Toulouse) Relativistic Quantum Chemistry ESQC 2024 107 / 110



Pseudopotential parametrization

Energy-consistent pseudopotentials:
(Preuss, Stoll, Dolg, Schwerdtfeger.....)

▶ Semi-empirical vs. ab initio

Shape-consistent pseudopotentials:
(Hay, Wadt, Christiansen, Ermler, Cundari, Stevens....)

▶ Pseudovalence orbital

Rp (r) =

{
Rv (r) ; r ≥ rc
f (r) ; r < rc

▶ VPP is then found by inversion of radial equation for the pseudovalence orbital

(
F̂v (r) + VPP

)
Rp (r) = Rp (r) εv ⇒ VPP (r) =

(
εv − F̂v (r)

)
Rp (r)

Rp (r)

Trond Saue (LCPQ, Toulouse) Relativistic Quantum Chemistry ESQC 2024 107 / 110



Introducing relativistic effects

With both scalar relativistic (SR) and spin-orbit (SO) interaction included one would
expect the form

VPP;A (riA) =
ℓmax∑
ℓ=0

ℓ+1/2∑
j=|ℓ−1/2|

Ṽℓj (riA)

j∑
mj=−j

|ℓjmj⟩⟨ℓjmj |

In practice the contributions are separated

V SR
PP;A =

ℓmax∑
ℓ=0

1

(2ℓ+ 1)

[
(ℓ+ 1) Ṽℓ,ℓ+1/2 + ℓṼℓ,ℓ−1/2

] ℓ∑
mℓ=−ℓ

|ℓmℓ⟩⟨ℓmℓ|

V SO
PP;A = σ ·

ℓmax∑
ℓ=0

1

(2ℓ+ 1)

[
Ṽℓ,ℓ+1/2 − Ṽℓ,ℓ−1/2

] ℓ∑
mℓ,m

′
ℓ
=−ℓ

|ℓmℓ⟩⟨ℓmℓ|ℓ|ℓ′m′
ℓ⟩⟨ℓ′m′

ℓ|
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Ṽℓ,ℓ+1/2 − Ṽℓ,ℓ−1/2
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Some important points

Size of core

Choice of valence basis

RECPs have names, just like basis sets !

Effective core potentials have limited applicability (in principle no core properties),
but are an excellent choice for many applications.
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