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Maxwell’s equations
for electric field E and magnetic field B in terms of sources p and j

@ The homogeneous pair:

v-B =0
B
VxE+0:B = 0 6‘tB:a—
ot
@ The inhomogeneous pair (sources):
V- -E = p/Eo
1 .
V X B — gatE = o)
o Electric and magnetic constants:
1
Ho€o = ?

@ Introducing electromagnetic potentials solves the homogeneous pair

oA
ot
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Maxwell’s equations: The stationary case

@ The homogeneous pair:

v-B = 0
VXE = 0
@ The inhomogeneous pair:
V- -E = p/Eo
VxB = /Loj

Implies steady currents:

o A useful formula:
V x(V xF)=V(V-F)-VF
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Maxwell’s equations: The stationary case
Electrostatics

VE=V(V-E)-V x (V X E) = Vp/e
—— N—_——
p/eo =0

Each component of the electric field fulfills
the Poisson equation:

V2W (r1, t) = f (r1, t)
with solutions

1 f(ry,t
\U(rl,t):—ﬂ %d?’rg

Siméon Denis Poisson
(1781-1840)
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Maxwell’s equations: The stationary case
Electrostatics

47reg

E(I’l) = — 1 /V2f2(r2)d3l’2 = 1 /rlzp(rZ)d3r2
1

- 3
4meo rs

Coulomb’s law:

F(ri) = qE(n)
o [ N)r)
Areg |r17r’|3

Point charge:

p(r/) — 36 (r/ _ l’2) = F(n) = q1q2r12

3
dmeory,
Scalar form:
q1q92
rp=rpnpe — F= 5
4meory,

Charles-Augustin de Coulomb
(1736 - 1806)
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Maxwell’s equations: The stationary case

Magnetostatics

V’B=V (V- -B)=V x (V x B) = — (V xj)
N——

——
=0

SO,

Jean-Baptiste Biot

(1774-1862)

1ol

Biot-Savart law:

B(n) —-/° /7’” ir2) o,

47 i

It would be tempting to insert the expression for
a moving point charge

Ji(r) = @ws (r —rn(b)

but this is wrong, since a moving charge is not a
steady current.
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Hamiltonian in external fields

@ From classical mechanics
H(r,p,t) = Hp (r, 7, t)+ qoé(r, t); p=m+qgA
@ Minimal substitution (g = —e):
Ao H—ep; poA=p+eA

o This relativistic coupling of particles and fields
is also used in the non-relativistic domain.
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Non-relativistic Hamiltonian in external fields

@ Minimal substitution gives

a2 A2 e 2 42
hNR:L N pNR — T - iA.A A-b € —
0 2m 2m e¢ 2m + 2m b + Pl + 2m e
> no spin interactions
@ The Dirac identity
(60-A)(c-B)=A-B+io-(AxB)
@ A special case
N A £2
(o-B)(c-B)=p
suggests that spin is “hidden"” in the non-relativistic operator.
@ Minimal substitution then gives
. 5)2 L A)2
hé\IR:(G p) NN S (o #) —ed
2m 2m
a2 2 A2
_ p e . N e A eh ) _
= St BATAPIt S —+ (0 B)-ep
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Relativistic Hamiltonian in external fields

o Minimal substitution gives
h§ =pBmP +c(a-p) — h=pBm+c(a p)+ec(a-A)—ep

@ The expectation value of the interaction Hamiltonian is given in terms of the
electromagnetic potentials

(Hint) = / [o(r)6(r) — i(r) - A®)] r

@ Is it possible to express the interaction Hamiltonian directly
in terms of electromagnetic fields ?
> The answer is: Yes,
> using multipolar gauge
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Multipolar gauge

Taylor expansion of electromagnetic potentials

@ Scalar potential:

o (r.1)

I
—
»

~
N—r
+

—
—

(<1
\./\
1
—

1\
\.H-
SN—

[
*\
1]
o
+

where a is the expansion point.
» We shall set a = 0, such that § =r.

o Likewise, for the vector potential

0=> L[t AE.0],

n=0
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Multipolar gauge

Replacing potentials by fields

A
@ Using the relation E= -V ¢ — %—t we obtain

ot = 300 - TE A0V EE)]

SR D1 (384 L (2 XT3} |

@ which can be written as a gauge transformation

(et)=0(rt) — x(n)

o with the gauge function

x(r,t) = i,;[ [ )" 1 (r'A(r/’t)”r/:o
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Multipolar gauge

Final expressions

@ We next carry out the gauge transformation
A(r,t) = A(r,t) + Vx(rt)

@ After some further manipulations we arrive at the final expressions

¢> (rv t) = Q’; (07 t) - Zﬁ [(I’ . Vl)n (I’ -E (rlv t))] =0
n=0

_ _ = n . r\n—1 /
A(rt) = ;7(,1“)! [(r V)" (r x B(r,t))]
@ What happended to gauge freedom ?
ESQC 2022
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Multipolar gauge

Examples

o(rt) = ol — 2_:0 il ( El. Jn)
+1 n|
A(r,t) = - Z (:+2 (2 T ( rx leulz Jn)

@ Uniform electric field:

@ Uniform magpnetic field:
1
—0- _ - [0]
o(r,t) =0; A(r,t) = 5 (B X r)

@ For a time-dependent uniform magnetic field
we get a non-uniform electric field as well

E(r,t) = —Vé — 9,A = _% (v x :8)
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Multipole expansions

o In multipolar gauge the expectation value of the interaction Hamiltonian takes the
form

Ho) = [ 1000 = i(e) - AW

oo
_ a4 [n] -1 L () pln=1]
= Q%% Z 1 Qo1 " Bireoinos Z;,,!mjuz.ujnfl B ina

n—l n=

@ where appears electric multipoles
[l _ 3
leu.j,, = /rhrjz o p(r)dr
@ and magnetic multipoles

n . 3
wi = ot [ i)

Trond Saue (LCPQ, Toulouse) Molecular properties: basics ESQC 2022 13 /42



External fields
in terms of eletromagnetic potentials

Uniform electric field

¢(r)=—ri-E
@ Uniform magpnetic field

A(r) = %(B X i)

@ Nuclear spin:
myg = vlk; ~v- gyromagnetic ratio

@ Vector potential of point-like nuclear magnetic dipole
0o Mg X rig
Ak (ri) = Lf'
47 i
o Corresponding magnetic field

2
mg i — 3I’,'K (I’,'K . mK)
3
lik

8
Bk (I’,‘) =V x Ak = % mK?Tr(S(l’iK) -
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Relativistic interaction Hamiltonians

General form:
hf, = ec(a-A) —ep

Uniform electric field: .
her=—p-E; pu=—er

o Uniform magnetic field (Zeeman interaction):

~Z 2 2
hre/ = —m. - B; me (ri) = (riG X Jrel) i Je = —EC

N =

@ Nuclear spins:

r3

A hfs sel  pel Lo Tik X eca
hrel - - E mK'BKv BK(rf):_
47 "
K 1
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Non-relativistic interaction Hamiltonian

o General form:

2 A2
~NR _ eA eh . o
h + 5m (o-B)—ed

e . R
int —%[P'A'i‘A'P]‘f‘

2m
o Coulomb gauge (V-A =0)
e?A? e

2m —I—E(GHB)—qu)

N e R
hint = — (A~ D) +
m

@ Spin interaction:

eh

2m

h— . © . gee o
h=2"(c-B) - —(sB) — £°(-B)

> Electronic g-factor

ge = 2.0023193043617(15)

@ Uniform electric field:
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Non-relativistic interaction Hamiltonian
Zeeman interaction

@ General form: .
MR _ € (A gy EA L &gy
hine = - (A-p)+ m + S (§-B)—eg

o Uniform magnetic field (Zeeman interaction):
» Orbital Zeeman:

i’OZ —

—LEG-B; 2(;(1’):!’,-(;)([3
2m
> Spin Zeeman:
p? =& .8
2m

> Total paramagnetic contribution:

W= e By me () = — = (26 (1) + g8 (7))
2m
» Diamagnetic contribution:

2
~ g e
g = = (8~ (B-rc) (rc B)
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Non-relativistic interaction Hamiltonian
Hyperfine interaction

o General form:

e’ A? +gee

2
BNR
2m 2m

int =

(A-p)+

e A
™ (§-B)—eo
o Nuclear spins:
> Orbital contributions: ZE’,’:O + Z fpdse
K KL
* Paramagnetic spin-orbit:
spso _ Mo € 5
h — Li

= mg -
K 3
AT mry,

* Diamagnetic spin-orbit:

o — ( e )2 (@)2 |:(m;< -my) (rig - riL)3—3(mK ric) (rix - mL):|

2m 4 rixri

> Spin contributions: Z (Bfg + Eff’)
K
* Fermi contact (near-field):

- (2) (8) ¢ m5e)

* Spin-dipolar term (far-field):

Bl — _ (Po (&) ;. M ric — 3rix (ri - m)
K 4 2m r,%(
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Non-relativistic interaction operator
The NMR experiment

@ The NMR experiment involves a external magnetic field as well as nuclear spins
fr,ﬁf _ BOZ hsz Z (hpso + h ?1 dra) + Z hdso

@ where appears the mixed diamagnetic contribution

;,dBf;:@i[[(B'mK)(r’G"’K)_(B'r’K)(r’G'mK)”

A7 2m

3
ik
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Molecular properties and response theory

0 p=p 9+ pVF, + LpPF2 4+ Lp®F + LpWFr 4+ 2O F 4 .
o pi= frp(o)dT—i—/ AdrF, 4+ 4 /r,-p(zz)dTFze—i—...
N———

[P Bizz
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Response functions

@ Consider a Hamiltonian on the form:

+oo

@ Hermiticity implies:

Viy=v(ie) = Viw) =V(-w)

@ Kubo expansion:

01210) =

+

—+
+

(0/2/0)
/_ (¥ (@) e dw

1 +o00 too R i
3 [T, Ve e,

+oo +o0 .
% / / U V (wr), V (w2), V (ws)))ye ™ “rHeaten)t gy dis duss

o Exact states: the connection between expectation values and energy derivatives is
provided by the Hellmann-Feynmann theorem.
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Variational pertubation theory

o We start from an energy function

E=E(\e) A (variationall parameters)
€ (perturbation strengths)

@ We have to carefully distinguish total and partial derivatives
Consider the differential

-3 (25) o £ ()

@ Total derivative

dE
dz’:‘A

OE \ dey OE\ d\
; (@) d&‘A Jrz (8)\,‘)

- dea
1

OE " OE \ d)\;
- 85A 7 6>\,- dea
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Variational perturbation theory

dE _ 8£+Z OE\ d\;
dea 6:0_ Oea O\ ) dea i

i

o We start from

o Key assumption of variational perturbation theory

OE
O\

=0, Y\

dE) _[oE
dea 5:0_ aEA e=0
@ Second derivatives

d’E B
deadep e—0 N

@ ..translated to vector notation

o We then get

0*E 'y O’E O\
a&‘AaEB ; 86A8>\,‘ 8&‘5 -~ ’

d’E o , gl 5l
=Ez+E; - A
|: d ca d cB 0 AB A B
e=l
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Response equations

@ The variational condition implies

OE
O\

d OE

den | 0

€

=0, VN =

€

@ This allows us to generate response equations, e.g

d (OE _[2E | PE N _,
dea \ O\ 5:0_ Oead); 3)\,'8)\j Oea 5:0_

@ ..translated into vector notation

-1
Y+ EPAY =0 = A= (6) EY

@ Second derivative

2 —
d’E — EO gl \U_ gl gl (E[2]> 'l
d e d cg o AB A B AB A 0 B
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Exact-state response functions

@ Let us consider the exact-state response function.
It can be derived as a FCI problem.

@ We consider a time-independent Hamiltonian on the form

A N .1 .
H=Ho+V(e); V(e) :zX:EXhX+§;EXEYhXY

We assume that we have the exact solutions {|n)} of o

o We write the perturbed wave-function as
= Imen = 10)
n

@ We shall impose the normalization condition

(clc) = chm m|n) Z =1

The energy is

EF (c,e) = (c|H|c) = chm (mlf|nye, <> (0]H|0) =
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Exact-state response functions

o We set up a Lagrangian
L™ (c,e,1) = E™ (¢, €) — n((cle) — 1)

@ We impose variational conditions
> on the Cl-coefficients
8LFCI

ocn

_ AEF (c,€) _O{c|g)
B Ocn Ocn

=2(n|H - plc) =0

1>

* giving us a FCl-problem N
He = pc;  Hpn = (m|H|n)

> on the Lagrange-multiplier

oLFcl
=1—{cle)=0
O e
* ..returning the normalization condition.
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First-order response equations

@ Since the variational conditions are to hold at any perturbation strength, their total
derivatives with respect to perturbation strength are zero at any perturbation

strength.
@ We shall need the first-order reponse equation from the Cl-coefficients:

0 |: d <6LFC’>:| |:62LFCI BZLFCI de 82LFCI dll:|
dEB BC,, c—0 o

+ JE—
dcpOep 9c,Ocm deg Oc,0p dep

[<n\—| + 320l ulm) S22+ 2(se) ‘ﬂ
e=0

(n|hs|0) + ZZ<n|H0 — Eo|m)cl® 4 2(n|0) !

(n|hg|0) + 2 (E, — Eo) P + 28,01 = 0

o .. as well as the Lagrange multiplier

d 8LFCI _ 32 LFCI 02 LFCI dcm 62 LFCI d,u,
deg \ Op - Oudeg 4~ Oudcm dep  Oudp dep
e=0 - N —

=0 =0 e=0

= {— D2 <c|m)—B:| == 2(0m)cl = —2¢" =0
p o m
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First derivative

o We first consider

dLFCI aLFCI aLFC/ de aLFCI d/L aLFCI
dea |~ | Oea — Jcy dea | Op dea| { Oen L’
> where we used the variational conditions.
o Specifically, we calculate
dLFCI 8I_FCI 8’:/ .
= = o = h
= g }0 (elgerle)| = olhap)
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Second derivative
@ We continue to the second derivative

dLFCI r d BLFC’
dEAdEB - a ( BEA >:|
e=0 L e=0

B2 LFCl S2LFC de 2LFY du

i gen an

Oepdep — 0ealcy deg Oealp dep
——

= (0lhagl0) + > 2(0[haln)cl?!
n

@ From the response equations we know that céB] =0 and

8] 1 (n|hg|0) dLfe
nt0 = T 5 =
2 E,—E deadeg 0
-

- (0[ha|n){n|hg|0)
= (0lhaglo) — > — =
AB ~— E,— E

@ We recover the expression from Rayleigh-Schrodinger perturbation theory

@ For second-order NR magnetic properties the diamagnetic contribution is an
expectation value, the paramagnetic one a linear response function.

@ The linear response function contains excitation energies and transition moments.
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Hartree-Fock response theory
BCH-expansion of HF-energy

@ We write the perturbed HF state as

0) = exp (—R)[0); &= rpedhaq,
Pq

where |0) is the unperturbed HF solution, obtained with Fp.
o No Lagrange-multipliers are needed !

@ The perturbed HF energy is
E" (1) = (B1HI5) = (0] exp (%) M exp (=) [0)

@ We obtain an expansion in order of k using the BCH-expansion

EF (k) = (0A0) 0 (x°)
+ (0] |7 A] o) 0 ()
+ o) (& [# H ] 10) 0 (+?)
+ L0l [# [#, [/%,FI]H|O) 0 (v?)
_|_
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Hartree-Fock response theory
A very useful relation !

o Starting from

Z hpqapaq Z (pqlrs) 323;[35817

pars
@ .. one can derive

N N 1
[/%, H} =AM = Z h{l}apaq + 5 Z (pqlrs)tt alalasag,

@ ..where
h;{xli} = Z("ipthtq*hpt’im)
(palr)™ = 3 [l tlrs) — (pt1rs) ) + (e (tqlrs) — (ptlrs) )]
@ ..such that
B () = (OO} + O 10) + 301 [2. 4] o) + 0] |2 S0l [2. 4] o)

+ (0lH|0) + (014 0) +

I\JM—\ r\)\

~ 1 ~
(O1A)10) + 2 (011 [0) +
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Hartree-Fock response theory
Redundant variables

@ All terms of the BCH-expanded HF—energy have the same form
(A" o) = Zh{"} + - Z("HJJ 3 (pallrs) = {palrs) — (ps|rq)

We shall remove redundant varlatlonal parameters;
they do not contribute to (0|H*}|0). We note

Z h{l} = Z Z (Hizhtf - hitfiti)
i t
= Z Z (K,‘jhj,’ — h,‘jﬁji) + Z Z (Kiahai - hia’iai)
i i a
@ The one-electronterm involving only occupied orbitals is zero

DD (ki = hyrp) = D0 wihi = D> by = > wghi— > > kg =0
i J i Jj i Jj i J i J

» The same holds for the two-electron term;
orbital rotation parameters {n,-j} are redundant.

The same holds for {k.s} since they do not appear in these expressions at all.
We can therefore write

- ata N ata ata ata *ata
A= § n,,qalaq —- A= § [nafai ai + "ffaa;raa] = § [*@afai ai — fia;a?aa]
Pq

ai ai

Trond Saue (LCPQ, Toulouse) Molecular properties: basics ESQC 2022 32/42



Hartree-Fock response theory
HF gradient and first-order properties

@ Using the above simplifications, we first consider the HF gradient

wo_ |9E™ ,[3 o g } ,[3 Mes) } _ 9 opm
Foa = {aﬁpq =0 Loy <0‘ [H’H] o) e=0 — Lorpg (ORIo) e=0  Orpg 110
@ Actual expression
E(gll = |:LEHF:| = —Fi
,ai aﬁa’, o
o First-order properties:
dE"F OEMF a ¢ N
R I e I P T L)
€A e=0 €A e=0 €A e=0
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Hartree-Fock response theory
Second-order molecular properties

o First-order response equation

2 1 1
EPIXI — _gll
@ Solution vector:
X
XE:] = |: x* :| v Xai = Ry

@ Property gradient:

o Electronic Hessian

2 cHF o .
Asihj = [aifanb,] = 0Fap — dapFi + (ailljb)
[2] A B ai ) 1 e=0
Eo = B* A* )
2 -HF . .
Buw = || = (aillb)
ai"bj  e=p
@ Second-order molecular properties
d’EMF 0 1 7\ ! e 2 Uyl
P | e () el = olhaelo) + EXXE
e=0

@ Can we somehow extract excitation energies and transition moments ?
> Yes, we can !
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Hartree-Fock response theory
The frequency-dependent linear response function

@ Linear response function in the static case
AR 1 2\ 7! i
(A B)o = —EN (677) EY
@ Generalization to dynamics properties
AR 1 2 2\ 7! i
(A B)). = —ER (B —wsf)  ER,

@ where appears the generalized metric

Y. bj = -0 bé"
5[2] B Yy A . ai,by ab®y
0 — _A* _y* '
Dby = 0
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Hartree-Fock response theory

Excitation energies and transition moments from the linear response function

o We start from .
(A B)). = —EXT (EP — ws) el

@ We insert a non-singular matrix X
A A —1 -1
(B = —EXx(EF - wsf) (xT) xTEY
—1
= BV (XTEPIX —wx'sfix) T xTEY)

@ The resolvent matrix (XTE(?]X - wxfs(?]x) can be brought to diagonal form by
solving the generalized eigenvalue problem

EPX, — w,SP X, =0,

giving approximate exitation energies fw,.
o Corresponding approximate transition moments are obtained as EE]TXH .

@ Note that we obtain these quantities without explicit calculation of excited states !
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More on gauge transformations

@ From classical mechanics we saw that external fields are introduced into the
Hamiltonian through the substitutionsFrom classical mechanics

H(r,p,t) = Hp (r,m,t) + qé(r,t); p=m+qA
@ The potentials have gauge freedom
A — A = A+Vy
6 o ¢ = -0
@ Similarly, in the electronic QM Hamiltonian, minimal substitution gives
I:I(?,f), t) = I:I,, (7,7, t) —eg(r,t); Pp==®—eA

@ Gauge transformations may be induced by local unitary transformations
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Gauge transformation by local unitary transformation

Suppose that we have a wave function satisfying the time-dependent wave equation
(F/ - ih&) G(rt)=0
@ We consider a unitary transformation of our equation

ot (F/ - ihat) DO (rt)= 0" (F/ - ihat) Oy (r,t) =0

We choose a local unitary transformation on the form
U=exp [féex (r, t)]

@ We observe the following:
> inB Oy (r,t) = Uledex (v, t) + iid:] 9 (v, t)

> &0y (r,t) = (—ihV 4+ eA) U/ (r,t) = U[# — eV x (r, )] ¥/ (r, 1)
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Gauge transformation by local unitary transformation

@ We conclude that
(F/ - ihc’;‘t) G (r t) = (F/,, (b, 7,t) — ed(r. t) — ihat) G(rt)=0
@ becomes

ot (F/ - ihat) Oy’ (r,t) = (H,, (F, 7, 1) — ed/(r, t) — ihat) W (rt) =0,

Al = A-Vy

#' =p+eA’;
¢ = d+dx

@ In principle calculated observable are invariant under the gauge transformation, e.g.
@W'1Q1w") = (|00 ) = (¥[QlY),

<5->..but this may not be the case in a finite basis.
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Looking at a gauge-transformed wave function
(Figure from Trygve Helgaker)

o Consider the vector potential of a uniform magnetic field

Ao () = %(B X o)

@ The gauge origin may be shifted by a gauge transformation
1
Ac (ri) = 5 (B xrig) = Ao (ri) = Vix(ri); x(r)=r-Ao(G)

o lllustration: H, on the z-axis with a magnetic field B = 0.2 a.u. in the y-direction
> wave function with a gauge origin at O = (0,0, 0) (left) and G = (100, 0, 0) (right)

Wave functon,
‘Gauge transformed wave fundtion,

5 5 5

1 05 o o5 1 1 05 o0 05 1
Space coordinate, x (along the bond) Space coordinate, x (along the bond)
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London orbitals

@ Is there are optimal gauge origin when calculating magnetic properties ?

> For atoms: yes
> For molecules: no

@ One option is to introduce London orbitals,
> also called Gauge-Including Atomic Orbitals (GIAOs)

W) ) = e | er Ac(R)| x ()

> removes dependence on some arbitrary gauge origin G by shifting the gauge origin to
the center of the basis function
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Dissociation with and without London orbitals

(Figure from Trygve Helgaker)

@ Let us consider the FCI dissociation of H, in a magnetic field

» full lines: with London atomic orbitals
> dashed lines: without London orbitals
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