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Asking Nature ... and the computer

To learn about the world

the experimentalist asks Nature using his experimental apparatus
the theoretician asks the wave function Ψ
using mathematical operators Ω̂
The most important operator is the Hamiltonian
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The molecular problem

The time-independent molecular Schrödinger equation

ĤmolΨmol = E totΨmol

The molecular Hamiltonian

Ĥmol = T̂N + T̂e + Ven + Vee + Vnn

I T̂N(R) - kinetic energy of nuclei
I T̂e(r) - kinetic energy of electrons
I Ven(r,R) - electron-nucleus interaction
I Vee(r) - electron-electron interaction
I Vnn(R) - nucleus-nucleus interaction
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Simplifications

The Born-Oppenheimer approximation leads to a separation of the

I electronic problem

HelΨel(r; R) = E el(R)Ψel(r; R); Hel = T̂e + Ven + Vee + Vnn

I ... from the nuclear problem [
T̂N + E el(R)

]
χ(R) = E totχ(R)

... although many of us stop after the electronic part.
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Theoretical model chemistries

Electronic Hamiltonian: Ĥ =
N∑
i=1

ĥ(i) +
1

2

N∑
i 6=j

ĝ(i , j) + Vnn

Computational cost: xNy
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ĥ(i) +
1

2

N∑
i 6=j
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The electronic energy

The electronic wave function
Ψ(1, 2, . . . ,N)

is an extraordinarily complicated mathematical beast and generally not available in exact
form.

The expectation value of the electronic Hamiltonian is

E =
〈

Ψ
∣∣∣Ĥ∣∣∣Ψ

〉
=

N∑
i=1

〈
Ψ
∣∣∣ĥ(i)

∣∣∣Ψ
〉

+
1

2

N∑
i 6=j

〈Ψ |ĝ(i , j)|Ψ〉+ 〈Ψ |Vnn|Ψ〉

...and can be simplified.

The constant term is
E0 = 〈Ψ |Vnn|Ψ〉 = Vnn 〈Ψ|Ψ〉 = Vnn

which follows from the normalization of the wave function.
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The electronic energy
One-electron energy

We can simplify the one-electron energy

E1 =
N∑
i=1

〈
Ψ
∣∣∣ĥ(i)

∣∣∣Ψ
〉

=
N∑
i=1

ˆ
Ψ† (1, 2, . . . ,N) ĥ(i)Ψ (1, 2, . . . ,N) d1d2 . . . dN

... by noting that since electrons are indistinguishable,
all one-electron integrals have the same value〈

Ψ
∣∣∣ĥ(1)

∣∣∣Ψ
〉

=
〈

Ψ
∣∣∣ĥ(2)

∣∣∣Ψ
〉

= . . . =
〈

Ψ
∣∣∣ĥ(N)

∣∣∣Ψ
〉

We therefore pick one and multiply with the number N of electrons

E1 = N
〈

Ψ
∣∣∣ĥ(1)

∣∣∣Ψ
〉
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The electronic energy
Two-electron energy

For the two-electron energy

E2 =
1

2

N∑
i 6=j

〈Ψ |ĝ(i , j)|Ψ〉

=
1

2

N∑
i 6=j

ˆ
Ψ† (1, 2, . . . ,N) ĝ(i , j)Ψ (1, 2, . . . ,N) d1d2 . . . dN

we can proceed in similar fashion.
Since electrons are indistinguishable,
all two-electron integrals have the same value

〈Ψ |ĝ(1, 2)|Ψ〉 = 〈Ψ |ĝ(1, 3)|Ψ〉 = . . . = 〈Ψ |ĝ(N − 1,N)|Ψ〉
We can therefore write

E2 =
1

2
N (N − 1) 〈Ψ |ĝ(1, 2)|Ψ〉

where 1
2N (N − 1) is the number of electron pairs.
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The electronic Hamiltonian
1-electron density matrix

The one-electron Hamiltonian can be split into a free-electron part (kinetic energy) and a
term describing the electron-nucleus interaction

ĥ(1) = ĥ0(1) + v̂en (1)

The interaction operators v̂en (i) and ĝ(i , j) are multiplicative operators, that is, they do
not contain derivatives and can be moved around inside integrals, e.g.〈

V̂eN

〉
= N

ˆ
Ψ† (1, 2, . . . ,N) v̂eN(1)Ψ (1, 2, . . . ,N) d1d2 . . . dN

= N

ˆ
v̂eN(1)Ψ† (1, 2, . . . ,N) Ψ (1, 2, . . . ,N) d1d2 . . . dN

=

ˆ
v̂eN(1)n1(1; 1)d1

where we have introduced the one-electron density matrix

n1(1; 1′) = N

ˆ
Ψ† (1, 2, . . . ,N) Ψ (1′, 2, . . . ,N) d2 . . . dN
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The electronic Hamiltonian
2-electron density matrix

The kinetic part ĥ0 is in general not multiplicative, but we can write the expection value
of kinetic energy in terms of the one-electron density matrix by a trick〈

T̂e

〉
= N

ˆ
Ψ† (1, 2, . . . ,N) ĥ0(1)Ψ (1, 2, . . . ,N) d1d2 . . . dN

=

ˆ [
ĥ0(1′)n(1; 1′)

]
1′→1

d1

The expectation value of the two-electron interaction〈
V̂ee

〉
=

1

2
N(N − 1)

ˆ
Ψ† (1, 2, . . . ,N) ĝ(1, 2)Ψ (1, 2, . . . ,N) d1d2 . . . dN

=
1

2

ˆ
ĝ(1, 2)n2(1, 2; 1, 2)d1d2

may be expressed in terms of the two-electron density matrix

n2(1, 2; 1′, 2′) = N (N − 1)

ˆ
Ψ† (1, 2, . . . ,N) Ψ (1′, 2′, . . . ,N) d3 . . . dN
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The electronic energy
What is needed to calculate the energy?

This exercise has shown that in order to calculate the electronic energy we do not need
the full wave function in terms of N electron coordinates

I It suffices to have:
F the near-diagonal elements of the one-electron density matrix
F the diagonal elements of the two-electron density matrix.

Density functional theory goes a big step further and proposes that we only need the

electron density ρ(r) = −e
∑
spin

n (1; 1)
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The electronic problem

The generic form of the electronic Hamiltonian, relativistic or not, is

Ĥ =
n∑

i=1

ĥ(i) +
1

2

n∑
i 6=j

ĝ(i , j) + VNN

and is supposed to specify our system.

The problematic term is the two-electron interaction ĝ(i , j).

Let us for a moment drop this term, as well as VNN (a number),
and consider a two-electron system[

ĥ(1) + ĥ(2)
]

Ψ(1, 2) = EΨ(1, 2)
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The electronic problem
Separation of variables

We write the two-electron wave function as

Ψ(1, 2) = ϕa(1)ϕb(2)

Insertion into the wave equation gives

{h(1)ϕa(1)}ϕb(2) + ϕa(1) {h(2)ϕb(2)} = Eϕa(1)ϕb(2)

Division by Ψ(1, 2) gives

{h(1)ϕa(1)}
ϕa(1)

+
{h(2)ϕb(2)}

ϕb(2)
= E
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The electronic problem
Separation of variables

In order for this relation to hold for any choice of electron coordinates 1 and 2, we must
have

{h(1)ϕa(1)}
ϕa(1)︸ ︷︷ ︸

εa

+
{h(2)ϕb(2)}

ϕb(2)︸ ︷︷ ︸
εb

= E

A single wave equation for two electrons[
ĥ(1) + ĥ(2)

]
Ψ(1, 2) = EΨ(1, 2)

... is thereby converted into two wave equations for single electrons

h(1)ϕa(1) = εaϕa(1); h(2)ϕb(2) = εbϕb(2)

The situation is even simpler ...

Trond Saue (LCPQ, Toulouse) Second quantization ESQC 2019 14 / 48



The electronic problem
Indistinguishability

Electrons can not be distinguished,
so it suffices to solve a single wave equation

h(1)ϕx(1) = εxϕx(1); x = a, b, c, . . .

However, the form
Ψ(1, 2) = ϕa(1)ϕb(2)

is not an acceptable wave function:
I electrons are identical particles
I electrons are fermions:

the wave function must be antisymmetric under particle exchange

This leads to the form

Ψ(1, 2) =
1√
2
{ϕa(1)ϕb(2)− ϕb(1)ϕa(2)}
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The electronic problem
Slater determinants

This result is readily generalized:
The exact wave function for a system of N non-interacting electrons is an
antisymmetrized product of one-electron wave functions (orbitals).

Ψ(1, 2, . . . ,N) =
1√
N!
Âϕ1(1)ϕ2(2) . . . ϕN(N) = |ϕ1(1)ϕ2(2) . . . ϕN(N)|

where Â is the anti-symmetrization operator.

The wave function for a system of N interacting electrons is typically expanded in an
N-electron basis of Slater determinants.

The fermionic nature of electrons is not built into the electronic Hamiltonian.

This is achieved with second quantization !

Trond Saue (LCPQ, Toulouse) Second quantization ESQC 2019 16 / 48



First quantization

The quantum-mechanical Hamiltonian Ĥ is obtained from its classical counterpart, the
Hamiltonian function H ≡ H(r,p), by replacing the dynamical variables (position r and
momentum p) by operators:

I in the coordinate representation:

r→ r̂ = r; p→ p̂ = −i~ ∂
∂r

= −i~∇

I in the momentum representation:

r→ r̂ = i~
∂

∂p
; p→ p̂ = p

...in order to obey the fundamental commutator relation

[ri , pj ] = i~δij
Quantization leads to discrete values of the energy E
(as well as angular momentum etc.)
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Intermission: the double slit experiment

Researchers of Hitachi has reproduced the famous double-slit experiment using an electron
microscope as electron source, an “electron biprism” as double slit and a very sensitive electron
detector.
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Intermission: the double slit experiment

Researchers of Hitachi has reproduced the famous double-slit experiment using an electron
microscope as electron source, an “electron biprism” as double slit and a very sensitive electron
detector.

This information is contained in the wave function.
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Interpretation of the wave function

The wave function is interpreted as a probability amplitude.

For a system of N electrons the quantity

Ψ† (1, 2, . . . ,N) Ψ (1, 2, . . .N) d1d2 . . . dN

represents the probability of finding of finding the electrons in the infinitesimal volumes
d1, d2, . . . dN about the space/spin coordinates 1, 2, . . .N

This leads to the normalization conditionˆ
Ψ† (1, 2, . . . ,N) Ψ (1, 2, . . .N) d1d2 . . . dN = 1
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Second quantization

The electron density can be obtained from the quantity

ρ (1) = N

ˆ
Ψ† (1, 2, . . . ,N) Ψ (1, 2, . . .N) d2 . . . dN

The electron density integrates to the number of electronsˆ
ρ (1) d1 = N.

We now introduce an operator

N̂ =

ˆ
ψ̂† (1) ψ̂ (1) d1

... in terms of operators ψ̂†(1) and ψ̂(2), creating and annihilating electron density
amplitude at position 1, respectively.

We want the total operator N̂ to return the particle number N,
when acting on an object representing an N-electron system.
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Field operators

In order to represent electrons (fermions) field operators must obey the following
anti-commutation relations[

ψ̂†(1), ψ̂†(2)
]

+
= ψ̂†(1)ψ̂†(2) + ψ̂†(2)ψ̂†(1) = 0

[
ψ̂(1), ψ̂(2)

]
+

= ψ̂(1)ψ̂(2) + ψ̂(2)ψ̂(1) = 0

[
ψ̂(1), ψ̂†(2)

]
+

= ψ̂(1)ψ̂†(2) + ψ̂†(2)ψ̂(1) = δ(1− 2)

Bosons obey corresponding commutator relations.
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Expansion of field operators

Suppose that we have some orthonormal orbital basis {ϕp(1)}Mp=1

ˆ
ϕ†
p(1)ϕq(1)d1 = 〈ϕp|ϕq〉 = Spq = δpq

We now expand the field operators in this basis

ψ̂(1) =
∑
q

ϕq(1)âq; ψ̂†(1) =
∑
q

ϕ†
q(1)â†q

We find the expansion coefficients âp and â†p by

âp =

ˆ
ϕ†
p(1)ψ̂(1)d1; â†p =

ˆ
ψ̂†(1)ϕp(1)d1
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Expansion of field operators

This is perhaps easier seen using bracket notation, for instance

ψ̂(1) =
∑
q

ϕq(1)âp → |ψ̂〉 =
∑
q

|ϕq〉âp

... such that
〈ϕp|ψ̂〉 =

∑
q

〈ϕp|ϕq〉 âq =
∑
q

δpq âq = âp

The expansion coefficients âp and â†p are operators as well:

I âp is denoted an annihilation operator
I â†p is denoted a creation operator and is the conjugate of âp

I which means that
(
â†p
)†

= âp
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Annihilation and creation operators

The algebra of the annihilation and creation operators follows from the algebra of the field
operators. We have [

ψ̂(1), ψ̂†(2)
]

+
= δ(1− 2)

.. from which we deduce[
âp, â

†
q

]
+

=

[ˆ
ϕ†
p(1)ψ̂(1)d1,

ˆ
ψ̂†(2)ϕq(2)d2

]
+

Remembering that the integral signs are like summation signs we obtain[
âp, â

†
q

]
+

=

ˆ ˆ
ϕ†
p(1)ϕq(2)

[
ψ̂(1), ψ̂†(2)

]
+
d1d2

=

ˆ ˆ
ϕ†
p(1)ϕq(2)δ(1− 2)d1d2

=

ˆ
ϕ†
p(1)ϕq(1)d1 = δpq
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Algebra of annihilation and creation operators

We just found that (using an orthonormal basis)[
ψ̂(1), ψ̂†(2)

]
+

= δ(1− 2) ⇒
[
âp, â

†
q

]
+

= δpq

In a similar manner we find that[
ψ̂†(1), ψ̂†(2)

]
+

= 0 ⇒
[
â†p, â

†
q

]
+

= 0

[
ψ̂(1), ψ̂(2)

]
+

= 0 ⇒ [âp, âq]+ = 0
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Occupation-number vectors

Let us consider a simple example:
We have 4 orbitals {ϕ1, ϕ2, ϕ3, ϕ4} (M=4).

With two electrons (N=2) we can build

(
4
2

)
= 6 determinants. One example is

Φ (1, 2) =
1√
2!

∣∣∣∣ ϕ1(1) ϕ3(1)
ϕ1(2) ϕ3(2)

∣∣∣∣
or, in short-hand notation

Φ (1, 2) = |ϕ1ϕ3|

We can map this into an occupation-number vector (ONV)

Φk (1, 2) = |ϕ1ϕ3| → |k〉 = |k1, k2, k3, k4〉 = |1, 0, 1, 0〉

... where occupation numbers kp are either 0 or 1,
since electrons are fermions.
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Occupation-number vectors
Vacuum state and annihilation

Another example is

Φm(1, 2, 3) =
1√
3!

∣∣∣∣∣∣
ϕ1(1) ϕ2(1) ϕ4(1)
ϕ1(2) ϕ2(2) ϕ4(2)
ϕ1(3) ϕ2(3) ϕ4(3)

∣∣∣∣∣∣ = |ϕ1ϕ2ϕ4| → |m〉 = |1, 1, 0, 1〉

A special occupation-number vector is the vacuum state

|vac〉 = |0, 0, 0, 0〉

Annihilation operators reduce occupation numbers by one
and therefore all give zero when acting on |vac〉

âp |vac〉 = 0; ∀âp

This even serves as a definition of the vacuum state.
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Occupation-number vectors
Creation operators

Creation operators increase occupation numbers by one

â†1 |vac〉 = |1, 0, 0, 0〉
â†2 |vac〉 = |0, 1, 0, 0〉
â†3 |vac〉 = |0, 0, 1, 0〉
â†4 |vac〉 = |0, 0, 0, 1〉

..but, since they refer to fermions,
occupation numbers can not be greater than one

â†1 |1, 0, 0, 0〉 = â†1â
†
1 |vac〉 = 0

This follows directly from the special case[
â†p, â

†
p

]
+

= â†p â
†
p + â†p â

†
p = 2â†p â

†
p = 0
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Occupation-number vectors
More creation

We can build ONVs corresponding to N = 2

â†1 |0, 1, 0, 0〉 = |1, 1, 0, 0〉 = â†1â
†
2 |vac〉

Using the algebra of creation operators we find

â†2 |1, 0, 0, 0〉 = â†2â
†
1 |vac〉 = −â†1â

†
2 |vac〉 = − |1, 1, 0, 0〉

..showing how the fermion antisymmetry is built into the operators.
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Fock space
..or occupation-number space

Occupation number vectors (ONVs) have the general form

|k〉 = |k1, k2, . . . , kM〉 ; kp = 0 or 1

and reside in a Fock space of dimension 2M .
Any ONV can be generated from the vacuum state

|k〉 =
M∏
p=1

(
â†p
)kp |vac〉

An inner-product in Fock space is defined by

〈k|m〉 = δk,m =
M∏
p=1

δkp,mp

and is one if all occupation numbers are identical, zero otherwise.
A special case

〈vac|vac〉 = 1
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Fock space
..or occupation-number space

The dual vector 〈k| is obtained by conjugation, e.g. starting from

|k〉 = |1, 0, 1, 1〉 = â†1â
†
3â

†
4 |vac〉

... we have

〈k| = 〈1, 0, 1, 1| = 〈vac|
(
â†1â

†
3â

†
4

)†
= 〈vac| â4â3â1

I notice the change of operator order under conjugation
I annihilation operators become creators when operating to the left
I the dual vacuum state can therefore be defined by

〈vac| â†p = 0; ∀â†p

Trond Saue (LCPQ, Toulouse) Second quantization ESQC 2019 34 / 48



The number operator

Notice that in Fock space there is no restriction on particle number N, except N ≤ M.

We now return to the operator

N̂ =

ˆ
ψ̂† (1) ψ̂ (1) d1

Expanding the field operators in some orthonormal orbital basis {ϕp(1)}Mp=1 we obtain

N̂ =

ˆ
ψ̂†(1)ψ̂(1)d1 =

∑
pq

{ˆ
ϕ†

p(1)ϕq(1)d1

}
â†p âq =

∑
pq

δpq â
†
p âq =

∑
p

â†p âp

... which defines the number operator N̂. For instance

N̂ |1, 0, 1, 1〉 = 3 |1, 0, 1, 1〉

The occupation number vectors are eigenvectors
of the number operator.
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Counting electrons

The field operators do not relate to specific electrons; rather, they sample contributions to
the electron quantum field in space

Quantum field theory explains why electrons are the same everywhere:
they all belong to the same field !
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The number operator
and commutator algebra

Suppose that
N̂ |k〉 = N |k〉

What about N̂a†p |k〉 ?

We can rewrite this as
N̂â†p |k〉 =

(
â†pN̂ +

[
N̂, â†p

])
|k〉

We need to solve the commutator[
N̂, â†p

]
=
∑
q

[
â†q âq, â

†
p

]
We may use a commutator rule such as[

ÂB̂, Ĉ
]

= ÂB̂Ĉ− ĈÂB̂ = ÂB̂Ĉ−ÂĈB̂ + ÂĈB̂− ĈÂB̂ = Â
[
B̂, Ĉ

]
+
[
Â, Ĉ

]
B̂
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The number operator
and commutator algebra

The algebra of creation and annihilation operators is, however, expressed in terms of
anti-commutators [

â†p, â
†
q

]
+

= 0; [âp, âq]+ = 0;
[
âp, â

†
q

]
+

= δpq

We therefore rather form the rule[
ÂB̂, Ĉ

]
= ÂB̂Ĉ− ĈÂB̂ = ÂB̂Ĉ+ÂĈB̂− ÂĈB̂− ĈÂB̂ = Â

[
B̂, Ĉ

]
+
−
[
Â, Ĉ

]
+

B̂

... which gives

[
N̂, â†p

]
=
∑
q

[
â†q âq, â

†
p

]
=
∑
q

â†q
[
âq, â

†
p

]
+︸ ︷︷ ︸

=δpq

−
[
â†q, â

†
p

]
+︸ ︷︷ ︸

=0

âq

 = â†p

Our final result is thereby

N̂â†p |k〉 =
(
â†pN̂ +

[
N̂, â†p

])
|k〉 = â†p

(
N̂ + 1

)
|k〉 = (N + 1) â†p |k〉
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The number operator
and commutator algebra

What about N̂ap |k〉 ?

We can write this as
N̂âp |k〉 =

(
âpN̂ +

[
N̂, âp

])
|k〉

We can proceed as before, but instead we note that

I

[
Â, B̂

]†
=
(

ÂB̂− B̂Â
)†

= B̂
†
Â
†
− Â

†
B̂
†

= −
[
Â
†
, B̂

†]
I N̂† =

∑
p

(
â†p âp

)†
= N̂ (hermitian operator)

... so that

N̂âp |k〉 =

(
âpN̂ −

[
N̂, â†p

]†)
|k〉 = âp

(
N̂ − 1

)
|k〉 = (N − 1) âp |k〉
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Counting electron pairs

Let us have a look at the second quantization operator

N̂pair =
1

2

ˆ
ψ̂†(1)ψ̂†(2)ψ̂(2)ψ̂(1)d1d2

=
1

2

∑
pqrs

{ˆ
ϕ†

p(1)ϕ†
q(2)ϕr (2)ϕs(1)d1d2

}
â†p â

†
q âr âs

=
1

2

∑
pqrs

{ˆ
ϕ†

p(1)ϕs(1)d1

ˆ
ϕ†

q(2)ϕr (2)d2

}
â†p â

†
q âr âs

=
1

2

∑
pqrs

{δpsδqr} â†p â†q âr âs =
1

2

∑
pq

â†p â
†
q âq âp

Operator algebra

â†p â
†
q âq âp = −â†p â†q âp âq = −â†p

(
δpq − âp â

†
q

)
âq = â†p âp â

†
q âq − δpq â†p âq

...shows that it counts electron pairs

N̂pair =
1

2
N̂
(
N̂ − 1

)
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What does the second-quantized electronic Hamiltonian look like?

The first-quantized form

Ĥ =
N∑
i=1

ĥ(i) +
1

2

N∑
i 6=j

ĝ(i , j) + VNN

The second-quantized form

Ĥ =

ˆ
ψ̂†(1)ĥ(1)ψ̂(1)d1 +

1

2

ˆ
ψ̂†(1)ψ̂†(2)ĝ(1, 2)ψ̂(2)ψ̂(1)d1d2 + VNN

(notice the order of electron coordinates in the two-electron operator)

This gives a formula for finding the second-quantized form of any one- and two-electron
operator.
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What does the second-quantized electronic Hamiltonian look like?

The one-electron part

Ĥ1 =

ˆ
ψ̂†(1)ĥ(1)ψ̂(1)d1

=
∑
p

∑
q

{ˆ
ϕ†
p(1)h(1)ϕq(1)d1

}
â†p âq =

∑
p,q

hpq â
†
p âq

Proceeding in the same way with the two-electron part we obtain

Ĥ2 =
1

2

ˆ
ψ̂†(1)ψ̂†(2)ĝ(1, 2)ψ̂(2)ψ̂(1)d1d2

=
1

2

∑
pq,rs

Vpq,rs â
†
p â

†
q âs âr

Dirac notation: Vpq,rs = 〈ϕpϕq|ϕrϕs〉 =

ˆ
ϕ†

p(1)ϕ†
q(2)ĝ(1, 2)ϕr (1)ϕs(2)d1d2

Mulliken notation: gpq,rs = (ϕpϕq|ϕrϕs) =

ˆ
ϕ†

p(1)ϕ†
r (2)ĝ(1, 2)ϕq(1)ϕs(2)d1d2
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What does the second-quantized electronic Hamiltonian look like?

The final form is

Ĥ =
∑
pq

hpq â
†
p âq +

1

2

∑
pq,rs

Vpq,rs â
†
p â

†
q âs âr + VNN

This is a very convenient operator form:

I The fermion antisymmetry is built into the operator
I The operator is expressed in terms of one- and two-electron integrals,

which are the basic ingredients of quantum chemistry codes
I The form is universal; there is no reference to the number of electrons !

..but note that it is a projected operator:
I it “lives” in the space defined by the orbital set {ϕp}Mp=1.
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The electronic energy in second quantization

The electronic Hamiltonian is

Ĥ =
∑
pq

hpq â
†
p âq +

1

2

∑
pq,rs

Vpq,rs â
†
p â

†
q âs âr + VNN

The wave function is now expressed as a linear combination of occupation number vectors
(limited to occupation N)

|0〉 =
∑
k

Ck |k〉

The energy is given as the expectation value

E =
〈

0
∣∣∣Ĥ∣∣∣ 0

〉
=
∑
pq

hpqDpq +
1

2

∑
pq,rs

Vpq,rsdpq,rs + VNN

I Matrix elements hpq and Vpq,rs depends on the operator,
but are independent of wave function

I Orbital density matrices Dpq and dpq,rs are independent of operator,
but depend on wave function
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Orbital density matrices

One-electron orbital density matrix

Dpq =
〈

0
∣∣∣â†p âq∣∣∣ 0

〉
I dimension: M2

I contains all information needed to calculate expectation values of one-electron operators
I diagonalization gives natural orbitals

Two-electron orbital density matrix

dpq,rs =
〈

0
∣∣∣â†p â†q âs âr ∣∣∣ 0

〉
I dimension: M4

I contains all information needed to calculate expectation values of two-electron operators

Data reduction: C :

(
M
N

)
→ D/d : M2/M4 !!!
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Summary

Second quantization starts from field operators ψ†(1), ψ(1) sampling the electron field
in space. It provides a very convenient language for the formulation and implementation
of quantum chemical methods.

Occupation number vectors (ONVs) are defined with respect to some (orthonormal)
orbital set {ϕp(r)}Mp=1

Their occupation numbers are manipulated using creation- and annihilation operators,
â†p and âp, which are conjugates of each other.

The algebra of these operators is summarized
by anti-commutator relations[

â†p, â
†
q

]
+

= 0; [âp, âq]+ = 0;
[
âp, â

†
q

]
+

= δpq

and reflects the fermionic nature of electrons.

Trond Saue (LCPQ, Toulouse) Second quantization ESQC 2019 46 / 48



Summary

One-electron operators are translated
into their second quantized form by

N∑
i=1

f̂ (i) →
ˆ
ψ†(1)f (1)ψ(1)d1 =

∑
pq

〈
ϕp

∣∣∣f̂ ∣∣∣ϕq

〉
â†p âq

Two-electron operators are translated
into their second quantized form by

1

2

N∑
i=1

g(i , j) → 1

2

ˆ
ψ̂†(1)ψ̂†(2)ĝ(1, 2)ψ̂(2)ψ̂(1)d1d2

=
1

2

∑
pq,rs

〈ϕpϕq |ĝ |ϕrϕs〉 â†p â†q âs âr

Nice features is that:
I Antisymmetry is automatically built into the operators
I They are expressed in terms of integrals,

building blocks of quantum chemistry codes
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Summary

The second-quantized electronic Hamiltonian is expressed as

Ĥ =
∑
pq

hpq â
†
p âq +

1

2

∑
pq,rs

Vpq,rs â
†
p â

†
q âs âr + Vnn

The electronic energy becomes

E =
〈

0
∣∣∣Ĥ∣∣∣ 0

〉
=
∑
pq

hpqDpq +
1

2

∑
pq,rs

Vpq,rsdpq,rs + Vnn

which nicely separates

I operator content,
in terms of integrals hpq and Vpq,rs , and

I wave function content,
in terms of orbital density matrices Dpq and dpq,rs
(data compression)
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