Second quantization

Basics

Trond Saue

Laboratoire de Chimie et Physique Quantiques
CNRS/Université de Toulouse (Paul Sabatier)

118 route de Narbonne, 31062 Toulouse (FRANCE)
e-mail: trond.saue@irsamc.ups-tlse.fr

Université
Paul Sabatier

TOULOUSE 11

Second quantization ESQC 2019 1/48



Asking Nature ... and the computer

the appestances of the
Complox on +he Compuler and
on the bench are exoacHy

+he same

C omputotional Chemistryy

To learn about the world

@ the experimentalist asks Nature using his experimental apparatus
@ the theoretician asks the wave function W
using mathematical operators €2

@ The most important operator is the Hamiltonian
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The molecular problem

oxygen

@ The time-independent molecular Schrédinger equation
I’_‘Imolwmo/ — Etotwmol
@ The molecular Hamiltonian

/:ImOI = ?_N + ?_e + Ven + Vee + Vnn

Tn(R) - kinetic energy of nuclei

T.(r) - kinetic energy of electrons
Ven(r, R) - electron-nucleus interaction
Vee(r) - electron-electron interaction
Vin(R) - nucleus-nucleus interaction

vV vy VY VvYy
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Simplifications

@ The Born-Oppenheimer approximation leads to a separation of the

> electronic problem
HeWe (r;R) = EY(R)W(r;R);  H = T+ Vep + Ve + Vin
» ... from the nuclear problem

[ T+ E¥(R)| X(R) = E“*\(R)

@ ... although many of us stop after the electronic part.
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Theoretical model chemistries

method (y)
CCSD(T) <+
MP2 <+

HF +

1 l 1
1 DZ TZ  QZ  basis(N,

4

Hamiltonian (x)

N N
~ ~ 1
Electronic Hamiltonian: H = g h(i) + 3 E &(i,j)+ Van
i=1 i#j

Computational cost: xNY
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The electronic energy

@ The electronic wave function
v(1,2,...,N)

is an extraordinarily complicated mathematical beast and generally not available in exact
form.

@ The expectation value of the electronic Hamiltonian is

E= <w’ﬂ’w> :§N:<w‘ﬁ(i)
=1

=

N
W)+ 23 WG )+ (Y V] W)

@ ...and can be simplified.

@ The constant term is
Eo = (W |Vpp| V) =V (VW) =V,

which follows from the normalization of the wave function.
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The electronic energy

One-electron energy

@ We can simplify the one-electron energy

S (w]io]w)

E

N
_ Z/\UT(I,L...,N)ﬂ(i)\ll(l,2,...,N)d1d2...dN
i=1

@ ... by noting that since electrons are indistinguishable,
all one-electron integrals have the same value

<w ‘3(1)‘ w> - <\u ‘ﬁ(z)’ w> — = <w ‘H(N)‘ w>

@ We therefore pick one and multiply with the number N of electrons

E = /v<w ’ﬁ(l)‘ w>
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The electronic energy

Two-electron energy

@ For the two-electron energy

Ex = Z gl v

I#J

= 72/\11* LN E(GL )V (1,2, .., N)d1d2. .. dN

i#
we can proceed in similar fashion.

@ Since electrons are indistinguishable,
all two-electron integrals have the same value

(V]g(1,2)[w) = (V[g(L,3)| V) =... = (V[g(N — 1, N)| V)
@ We can therefore write 1
= 5NN -1){VI[g(1,2)[ V)

where N (N — 1) is the number of electron pairs.
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The electronic Hamiltonian

1-electron density matrix

@ The one-electron Hamiltonian can be split into a free-electron part (kinetic energy) and a
term describing the electron-nucleus interaction

E(l) = 770(1) + Ven (1)

@ The interaction operators Ve, (/) and g(i,j) are multiplicative operators, that is, they do
not contain derivatives and can be moved around inside integrals, e.g.

<\7€N> - N/WT(1,27...,N) ()W (1,2,..., N)d1d2...dN
= N/VeN(l)\IJT(1727...7N)\U(1,2,...,N)d1d2...dN
= /OeN(l)nl(l;l)dl
@ where we have introduced the one-electron density matrix
n1(1;1’):N/\IJT(1,2,...,N)\Il(l’,2,...,N)d2...dN
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The electronic Hamiltonian

2-electron density matrix

@ The kinetic part ho is in general not multiplicative, but we can write the expection value

of kinetic energy in terms of the one-electron density matrix by a trick

<t> - N/\IIT(1,2,...,N)IA10(1)\U(1,2,...,N)d1d2...dN

_ /[i,o(l’)n(l;l')]mldl

@ The expectation value of the two-electron interaction

<v> - %N(N—1)/\IJT(1,2,...,N)§(172)\U(1,2,...,N)d1d2...dN

1
- 5/g—(1,2)r12(1,2;1,2)o|1c|2
may be expressed in terms of the two-electron density matrix
m(1,2;1,2) —1)/\11T NYW(1',2,...,N)d3...dN
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The electronic energy

What is needed to calculate the energy?

@ This exercise has shown that in order to calculate the electronic energy we do not need
the full wave function in terms of N electron coordinates
» It suffices to have:
* the near-diagonal elements of the one-electron density matrix
* the diagonal elements of the two-electron density matrix.

@ Density functional theory goes a big step further and proposes that we only need the

electron density p(r) = —eZn(l; 1)
spin
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The electronic problem

@ The generic form of the electronic Hamiltonian, relativistic or not, is
H = IX_; h(i) + 5 ;g(/d) + Vn
and is supposed to specify our system.

@ The problematic term is the two-electron interaction g(/, j).

@ Let us for a moment drop this term, as well as Viyy (a number),
and consider a two-electron system

[E(l) + /“1(2)} W(1,2) = EW(1,2)
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The electronic problem

Separation of variables

@ We write the two-electron wave function as

V(1,2) = pa(1)es(2)

@ Insertion into the wave equation gives

{h(1)ea(1)} p6(2) + ©a(1) {h(2)#p(2)} = Epa(1)p(2)

e Division by W(1,2) gives

(hD)ea(D)} | (h(2)es2)}
PNC) IR ) B
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The electronic problem

Separation of variables

@ In order for this relation to hold for any choice of electron coordinates 1 and 2, we must

have
[h)ea(D)} | {h@es(2)} _
Tam e F

@ A single wave equation for two electrons
[/“7(1) + /3(2)} W(1,2) = EW(1,2)
@ ... is thereby converted into two wave equations for single electrons
h(1)pa(1) = capa(1);  h(2)pb(2) = ebps(2)

@ The situation is even simpler ...
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The electronic problem
Indistinguishability

@ Electrons can not be distinguished,
so it suffices to solve a single wave equation

h(1)px(1) = expx(1); x=a,b,c,...
@ However, the form
\U(la 2) = @a(l)SOb(z)
is not an acceptable wave function:

> electrons are identical particles
> electrons are fermions:
the wave function must be antisymmetric under particle exchange

@ This leads to the form

W(1,2) = é {2 (Den(2) — 9p(1)pa(2))
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The electronic problem

Slater determinants

@ This result is readily generalized:
The exact wave function for a system of N non-interacting electrons is an
antisymmetrized product of one-electron wave functions (orbitals).

V(L,2,...,N)= \/%A%(l)%(m con(N) = Je1(1)p2(2) - - on(N)]

where A is the anti-symmetrization operator.

@ The wave function for a system of N interacting electrons is typically expanded in an
N-electron basis of Slater determinants.

@ The fermionic nature of electrons is not built into the electronic Hamiltonian.

@ This is achieved with second quantization !
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First quantization

@ The quantum-mechanical Hamiltonian H is obtained from its classical counterpart, the
Hamiltonian function H = H(r,p), by replacing the dynamical variables (position r and

momentum p) by operators:
> in the coordinate representation:

r—>t=r, p—p=—ih—=—ihAV
> in the momentum representation:

. .. 0
r—>¢ft=ih—; p—pPp=p
op

@ ...in order to obey the fundamental commutator relation

[ri, pj] = ihdj

@ Quantization leads to discrete values of the energy E

(as well as angular momentum etc.)
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Intermission: the double slit experiment

Researchers of Hitachi has reproduced the famous double-slit experiment using an electron

microscope as electron source, an “electron biprism” as double slit and a very sensitive electron
detector.

( |
SN

HITACHI
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Intermission: the double slit experiment

Researchers of Hitachi has reproduced the famous double-slit experiment using an electron
microscope as electron source, an “electron biprism” as double slit and a very sensitive electron

detector.

Detector

/ /\ / Electron biprism

Source

HITACHI

This information is contained in the wave function.
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Interpretation of the wave function

@ The wave function is interpreted as a probability amplitude.

@ For a system of N electrons the quantity
wi(1,2,... ,N)V(1,2,...N)d1d2...dN

represents the probability of finding of finding the electrons in the infinitesimal volumes
dl, d2,...dN about the space/spin coordinates 1, 2,... N

@ This leads to the normalization condition

/\UT(l,z,...,N)\IJ(1,2,...N)d1d2...dN:1
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Second quantization

@ The electron density can be obtained from the quantity
MD:N/WGJWWMW@ZWNMZHM
@ The electron density integrates to the number of electrons

/p(l) 1= .

@ We now introduce an operator
W= [ Wi

@ ... in terms of operators 1)T(1) and ¢)(2), creating and annihilating electron density
amplitude at position 1, respectively.

o We want the total operator N to return the particle number N,
when acting on an object representing an N-electron system.
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Field operators

@ In order to represent electrons (fermions) field operators must obey the following
anti-commutation relations

PP = FOHEIEI = o
0@, = B +i@ = o

POE), = dFE@+ P = -2

@ Bosons obey corresponding commutator relations.

Trond Saue (LCPQ, Toulouse) Second quantization ESQC 2019

24 /48



Expansion of field operators

@ Suppose that we have some orthonormal orbital basis {gop(l)}g/lzl

[ b1 = (2ploa) = Soa = b

@ We now expand the field operators in this basis
(1) =Y eaDag D1 =D @h(1)3]
q q
@ We find the expansion coefficients 3, and Q,TJ by

so= [GhIWL 8= [ W)L
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Expansion of field operators

@ This is perhaps easier seen using bracket notation, for instance
P(1) = Z‘Pq(l)gp — ) = Z Pq)3p
q q

@ ... such that

(old) = (0plva) 2 = D) dpqdq = 3

q

@ The expansion coefficients 3, and éz, are operators as well:

» 3, is denoted an annihilation operator
> é;f, is denoted a creation operator and is the conjugate of a,
» which means that (éL)T =23
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Annihilation and creation operators

@ The algebra of the annihilation and creation operators follows from the algebra of the field

operators. We have
PR =61-2)

e .. from which we deduce
20dl] = | [ hian, [ )]
@ Remembering that the integral signs are like summation signs we obtain
i), = [ [Ae@[60).01@)] da
= //¢;(1)¢q(2)5(1—2)d1d2

— / Fh(1)a(1)d1 = 0y
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Algebra of annihilation and creation operators

@ We just found that (using an orthonormal basis)
POIR], =60-2) = |3.3]] =
@ In a similar manner we find that

[@ZT(1),$T(2)} -0 = [a,t,ai,] ~ 0

+

POAQ| =0 = Bl = 0
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Occupation-number vectors

@ Let us consider a simple example:
We have 4 orbitals {1, 2, 3, 04} (M=4).

e With two electrons (N=2) we can build ( g )— 6 determinants. One example is

(1,2 ‘ ©1(1) 3(1) ‘
T2 e1(2) es(2)
@ or, in short-hand notation

®(1,2) = 143

e We can map this into an occupation-number vector (ONV)
¢k(172): |§01303| - |k> = |k17k27k3ak4> = |1707170>

@ ... where occupation numbers k, are either 0 or 1,
since electrons are fermions.
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Occupation-number vectors
Vacuum state and annihilation

@ Another example is

1 | 2r(1) @2(1)  a(1)
On(1,2,3) = —= 1 ¢1(2) ¢2(2) ¢a(2) | = [prp2pal — M) =][1,1,0,1)
V3 Gi3) 22(3) (3)

@ A special occupation-number vector is the vacuum state
|vac) = |0,0,0,0)

@ Annihilation operators reduce occupation numbers by one
and therefore all give zero when acting on |vac)

aplvac) =0; Va,

@ This even serves as a definition of the vacuum state.
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Occupation-number vectors
Creation operators

o Creation operators increase occupation numbers by one

al lvac) = 1,0,0,0)
ablvac) = 10,1,0,0)
al|vac) = 10,0,1,0)
a lvac) = 10,0,0,1)

@ ..but, since they refer to fermions,
occupation numbers can not be greater than one

a111,0,0,0) = alal [vac) = 0

@ This follows directly from the special case

at at]  _ atat | atat _ oatat _
[ap, ap L= apa, + apa, = 2apap =0
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Occupation-number vectors
More creation

@ We can build ONVs corresponding to N = 2
5110,1,0,0) = [1,1,0,0) = !4l |vac)
@ Using the algebra of creation operators we find
35 11,0,0,0) = abal |vac) = —ala] |vac) = —1,1,0,0)

@ ..showing how the fermion antisymmetry is built into the operators.
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Fock space

..or occupation-number space

@ Occupation number vectors (ONVs) have the general form
‘k>:‘k1,k2,...,k/\/[>; kp:00r1
and reside in a Fock space of dimension 2M.

@ Any ONV can be generated from the vacuum state

n K

k) =] (3))" Ivac)

p=1

@ An inner-product in Fock space is defined by

M
(k[m) = Sicm = [ ] 05,m,
p=1
and is one if all occupation numbers are identical, zero otherwise.
@ A special case
(vac|vac) =1
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Fock space

..or occupation-number space

@ The dual vector (k| is obtained by conjugation, e.g. starting from
k) = [1,0,1,1) = 3}a}3} |vac)

@ ... we have ’r
<k| = <1707 1’ 1’ = (vac| <§J{§g§1> = <V3C| 343331

» notice the change of operator order under conjugation
» annihilation operators become creators when operating to the left
» the dual vacuum state can therefore be defined by

(vac| 3} =0; val
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The number operator

Notice that in Fock space there is no restriction on particle number N, except N < M.

= 3 Wi

Expanding the field operators in some orthonormal orbital basis {gop(l)}z”:

N = /z/A)T(l)dA;(l)dl => {/%(1)% l)dl} aha, = Za a3h3q = Zé*ép

pq

We now return to the operator

, we obtain

@ ... which defines the number operator N. For instance

N11,0,1,1) =3(1,0,1,1)

The occupation number vectors are eigenvectors
of the number operator.
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Counting electrons

@ The field operators do not relate to specific electrons; rather, they sample contributions to
the electron quantum field in space

@ Quantum field theory explains why electrons are the same everywhere:
they all belong to the same field !
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The number operator

and commutator algebra

@ Suppose that

e What about Na;r, k) ?
@ We can rewrite this as

N3t k) = (agN+ [N,a,t]) 1K)
@ We need to solve the commutator
[N, a,t] = [agéq, aj,}
q
@ We may use a commutator rule such as
[AB,C| = ABC - CAB = ABL-ACB + ACB - CAB =A[B,¢| + [A.C|B
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The number operator

and commutator algebra

@ The algebra of creation and annihilation operators is, however, expressed in terms of
anti-commutators

~

330, =0 [ 3, =0 [3:3}], = g
@ We therefore rather form the rule
{AB, é] = ABC — CAB = ABC+ACB — ACB — CAB =

b3
0>
oy

@ ... which gives

@ Our final result is thereby
Nal k) = (§LN+ [N, a;D k) = 3} (N+ 1) k) = (N + 1) 3} [k)
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The number operator

and commutator algebra

o What about Naj, |k) ?

@ We can write this as
N, k) = (apN+ [N,ap]) 1K)
@ We can proceed as before, but instead we note that
~ a1t A A\ T At oA At A FETN
. [A, B] - (AB _ BA) _g'AT _ATgT = [AT, BT]

= N (hermitian operator)

v
>
=
Il
—~
>
< —+
>
o
~—
-

@ ... so that

N, k) = (3,,N - [N, é},D k) = 3, (N . 1) k) = (N —1)3, k)
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Counting electron pairs

@ Let us have a look at the second quantization operator

~

Npair

@ Operator algebra

> [P @i

1| [ @) stala

3 > { / Ph(1)ps(1)d1 / ¢;(2)¢,(2)d2} 3)ala,3
Z{épséq,

@ ...shows that it counts electron pairs
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What does the second-quantized electronic Hamiltonian look like?

@ The first-quantized form
N

N
Ao 1 ap
= Z h(i) + 5 Zg(w) + Vi
i=1 i#]
@ The second-quantized form

A= [ BRI+ [ 005 @)2(1,2d2)F(0ee2 + Vi

(notice the order of electron coordinates in the two-electron operator)

@ This gives a formula for finding the second-quantized form of any one- and two-electron
operator.
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What does the second-quantized electronic Hamiltonian look like?

@ The one-electron part

o= [
>

@ Proceeding in the same way with the two-electron part we obtain
R VR A
e = 5 [P0 e 2@

1 afata a
= 5 Z quy,sa;f,agasa,

pa,rs
@ Dirac notation: V,q.s = (wppqlerps) = /@;(1)4,01;(2)@(1,2)@,(1)@5(2)d1d2

@ Mulliken notation: guq.s = (¢pwqlerps) = /cpl(l)cpi@)g(l,2)<pq(1)<p5(2)d1d2
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What does the second-quantized electronic Hamiltonian look like?

@ The final form is

pq,rs

r At a 1 At ata A
H= E hpqaLaq + 5 E quy,saj,a};asar + Vi
Pq

@ This is a very convenient operator form:
» The fermion antisymmetry is built into the operator
» The operator is expressed in terms of one- and two-electron integrals,

which are the basic ingredients of quantum chemistry codes
» The form is universal; there is no reference to the number of electrons !

@ ..but note that it is a projected operator:
» it “lives” in the space defined by the orbital set {(pp}gil.
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The electronic energy in second quantization

@ The electronic Hamiltonian is

~ A 1 At A A
H= Z hpqaLaq + 5 Z qu,,sa;r,agasar + Vi
Pq pPg,rs

@ The wave function is now expressed as a linear combination of occupation number vectors

(limited to occupation N)
0) =) Celk)
k

@ The energy is given as the expectation value

A 1
E= <0 ‘H‘ 0> = Z hpgDpq + 2 Z Vog.rsdpg.rs + Viun
pq pq,rs

» Matrix elements hpq and V) = depends on the operator,
but are independent of wave function

» Orbital density matrices D,q and dpq s are independent of operator,
but depend on wave function
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Orbital density matrices

@ One-electron orbital density matrix

Dpq = (0

2t o
apaq

O>
» dimension: M?
» contains all information needed to calculate expectation values of one-electron operators
» diagonalization gives natural orbitals

@ Two-electron orbital density matrix

dpg,rs = <0 ’aT Tasa,

O>
» dimension: M*
» contains all information needed to calculate expectation values of two-electron operators

M

e Data reduction: C: ( N

) —~D/d: M2/M* 1
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Summary

o Second quantization starts from field operators 91(1), 1)(1) sampling the electron field
in space. It provides a very convenient language for the formulation and implementation
of quantum chemical methods.

@ Occupation number vectors (ONVs) are defined with respect to some (orthonormal)
orbital set {gop(r)}g/’:l

@ Their occupation numbers are manipulated using creation- and annihilation operators,
é,T, and 3, which are conjugates of each other.

@ The algebra of these operators is summarized
by anti-commutator relations

[g}; 3)2} =0 [3,3q], =0; [éP, ég] = Opq
+ +
and reflects the fermionic nature of electrons.
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Summary

@ One-electron operators are translated
into their second quantized form by

EN:?(i) - /W(l)f(l)w(l)dl:Z<¢p‘?’%>§;§q

Pq

@ Two-electron operators are translated
into their second quantized form by

3 e o [ F0i e i@

1 A atata a
= 3 > (e |8l prips) ahakasa,

pq,rs
@ Nice features is that:

» Antisymmetry is automatically built into the operators
» They are expressed in terms of integrals,
building blocks of quantum chemistry codes
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Summary

@ The second-quantized electronic Hamiltonian is expressed as
N a1 e
H= Z hpqalaq + 5 Z qu,,sa;r,agasa, + Vi
pq pq,rs

@ The electronic energy becomes

. 1
E = (0|A[0) =3 hpqDpq + 52 Voarsdoars + Van
pq pq,rs

@ which nicely separates

» operator content,
in terms of integrals hpq and Vg s, and

» wave function content,
in terms of orbital density matrices Dpq and dpg rs
(data compression)
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