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Where we stopped last time

o Second quantization starts from field operators 91(1), 1)(1) sampling the electron field
in space. It provides a very convenient language for the formulation and implementation
of quantum chemical methods.

@ Occupation number vectors (ONVs) are defined with respect to some (orthonormal)
orbital set {gop(r)}g/’:l

@ Their occupation numbers are manipulated using creation- and annihilation operators,
é,T, and 3, which are conjugates of each other.

@ The algebra of these operators is summarized
by anti-commutator relations

[g}; 3)2} =0 [3,3q], =0; [éP, ég] = Opq
+ +
and reflects the fermionic nature of electrons.
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What about spin ?

@ By convention, the z-axis is chosen as spin-axis such that the electron spin functions
|s, ms) are eigenfunctions of $2 and 8,

2 |s,ms) =s(s+1)|s,ms); 3, |s, ms) = mg|s, ms)

@ It is also convenient to introduce step operators
5. =5 +1i5 and 5_ =5, — i3,

8i|s,ms) =/s(s+1)—ms(ms£1)|s,ms £1)

o Electrons are spin-3 particles with spin functions denoted |a) = |3, 1) and |8) = |1, -3).

The action of the spin operators is summarized by
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Spin in second quantization

@ We may separate out spin from spatial parts of the creation-
and annihilation operators, giving

(3l 30, =0 B3], =0 e sjw,L = Gpgoor;

@ We may also separate out spin in the electronic Hamiltonian.
For the (non-relativistic) one-electron part we obtain

Ao = ZZ(‘PPUMWqu)é;aéw’

Pq o0’

Z Z<¢P|B|9@¢J><U|0/>é;0éqo/

Pq o,0’

- ZZ @p|h|@q o'o-’apo-aqo./

Pq o,0’

Z(‘Pp|h|90q Epq;  Epg = Zapaaqg

pPq
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Spin in second quantization

@ For the (non-relativistic) two-electron part we obtain

~ 1 "
H, = 5 Z Z <(PPU(P¢77-|g|§0f0/9057/>al1;0327 s/ arg!

pars oto’ T/

1 .
= 52 D (eevalalerps)(olo’)TlT) apoalr aer aror

pars oo’ T/

1 N
= 5 Z Z <§0P(10q|g|§0f'§05>500’57'7"3;o 337—357’aro’/

pqrs oo’ T/

= 2 Z Z (Pp89q|g|80r905>epq,r5y €pq,rs = Z apo'aqTaSTan

pars oto’ T/

@ Operator algebra

Il _ _of T T
apaalrasr’ara’ - _alaaj]-rarcras‘r = dpodrodqgrdst — 6qr60'7'apo-as‘r

@ .. shows that
€pq,rs = EprEqs — 6rqEps
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Hartree-Fock theory in second quantization

Reference ONV and orbital classes

@ In first quantization language the Hartree-Fock method employs a single Slater
determinant as trial function.

@ In second quantization we start from some orthonormal orbital basis {gop}[’y:l , which
defines our Fock space, and build a reference ONV in that space

0) = alal...al |vac) =|1,1,1,1, 0,....0
192 N
—_——— ———
N M—N

@ For further manipulations it is useful to introduce orbital classes:

» occupied orbitals: 7,j, k, /...
» virtual (unoccupied) orbitals: a, b, c,d, ...
» general orbitals: p,q,r,s,...
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Hartree-Fock theory in second quantization

Hartree-Fock energy

ata 1 atata a
E"" = (0]H|0) = (0] Z hpqa:r,aq + > Z quy,sa,ta};asa,\O) +V,

pg,rs

@ One-electron energy

= Z hpq<0|5;3q|0>
pq

» The operator 3, tries to remove an electron to the right;
this is only possible if orbital g is occupied.

> Likewise, the operator é}; tries to remove an electron to the left;
this is only possible if orbital p is occupied.

» The final ONVs created left and right by these processes must be the same
(to within a phase) for a non-zero inner product.

HF _ Zhﬁ
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Hartree-Fock theory in second quantization

Hartree-Fock energy

@ Two-electron energy
HF _ A
E" = E Viag.rs O|apaqasar\0)

pq,rs

> Operators 3, and 3; both try to remove an electron to the right;
orbitals r and s must be occupied, but not identical

» Operators é;r, and é:f, both try to remove an electron to the left;
orbitals p and g must be occupied, but not identical

> The final ONVs created left and right by these processes must be the same
(to within a phase) for a non-zero inner product.

» There are two possibilites

BN = 25 {Vis(013]3/3:810) + Viitolal3]ai3110)
i#]
@ The final expression is

E2HF 22{\/00_ UJI}—2Z<P:% | wis)

i#j
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Hartree-Fock theory in second quantization

Stationarity condition

@ The Hartree-Fock energy is a functional of the occupied orbitals
A 1
E" et =D _(eilhle) + 5 (eiws | @igs) + Van
i ij
@ .. and is minimized under the constraint of orthonormal orbitals
(pilps) = 6
@ This is normally done by the introduction of Lagrange multipliers

L o}l = E™ [{oi}] - Z i {{pile;) — 85}

@ Is it possible to achieve minimization without constraints ?
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Hartree-Fock theory in second quantization

Parametrization

@ Suppose that we generate the optimized orbitals by transforming the initial orthonormal
M
set {Sop}p:]_

Gp = Z PqCap
q
and use the expansion coefficients {cp} as variational parameters ?
@ In order to preserve orthonormality the expansion coeffients must obey

(@plGq) = Z<90rcrp‘90scsq> = Z {prlis) CrpCsq = Z CrpCrg = Opg
H,—/ -

rs rs
drs

@ ..which means that they must form a unitary (orthogonal) matrix for complex (real)
orbitals: CTC =1

o This adds 2 M(M + 1) constraints,
and so we can not vary the coefficients freely.
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Hartree-Fock theory in second quantization

Matrix exponentials

@ We can, however, circumvent these constraints by writing the matrix as an exponential
of another matrix
U = exp(A)

@ You recall (I hope) that the exponential of a (complex or real) number is

o _k
exp(a) = e? = Z al
Plal=e =2
k=0
@ We have some simple rules, e.g.
eleb =P, = e7e? =1

@ With matrices we have to be more careful, because, like operators,
they generally do not commute.
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Hartree-Fock theory in second quantization

Matrix exponentials

@ In perfect analogy with numbers we define
Ak
exp(A) = 7
< k!
@ We next consider the product
p)ep(B) = 33 A B
m=0 n=0
@ We rearrange to collect contribution of order k = m+ n
k—m oo 1 k k
mpk—m
coyenls) = Y3 MBS LS (f e

k=0 m=0 " m=0

e With numbers, we obtain our desired result e?e? = e?*? by recognizing that

=25 (5) ity

m=0
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Hartree-Fock theory in second quantization

Matrix exponentials

@ With matrices this does not work, for instance
(A+ B)? = A2 + AB+ BA+ B2 # A% + 2AB + B>

since, generally [A, B] #0
@ However, [A,(—A)] =0, so we can use this rule to obtain that

exp(A) exp(—A) = I;  [exp(A)] " = exp(—A)
@ It is also straightforward to show that
exp(A)T = exp (AT>
@ A unitary matrix is defined by U1 = U which is obtained by using an anti-Hermitian A
Al = —A
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Hartree-Fock theory in second quantization

Exponential parametrization

e We avoid Lagrange multipliers (constraints) by expressing the optimized orbitals as
Pp = Zgquqp; U=exp(—kr); K =—k
q

@ | will now show that this corresponds to writing the optimized HF occupation-number

vector as
|0) = exp (—#)|0)

@ where & is an orbital rotation operator with amplitudes rpq

A~ /\T/\ ) Lk
R = E K/pqapaq, Hpq = /iqp
Pa
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Hartree-Fock theory in second quantization

Exponential parametrization
@ We start by the expansion

|0) = exp (—&) |0) = exp (—&) 31'3; . a}LV |vac)

o Next, we insert exp (R) exp (—#) = 1 everywhere

|0) = exp(—#) a{exp (R)exp (—/%)ag exp (R)...exp (—R) a;rvexp (R) exp (—R) |vac)
5152 e EL exp (—R) |vac);

= 3] = exp (—#) af exp (%)
@ First, we note that

Rlvac) =

= Z npqalaq |vac) = 0;
Pq

= exp (—R) |vac) = (1—/%—}—
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Hartree-Fock theory in second quantization

Baker-Campbell-Hausdorff expansion

Baker Campbell Hausdorff

@ We next use the Baker-Campbell-Hausdorff expansion

oo

exp(A)Bexp(—A) = B + [A, B] + % AAB]+...=> % [A, B]®
k=0 "
e Proof: We introduce f (\) = exp(AA)B exp(—AA) and note that

» f(0)=B
» (1) = exp(A)Bexp(—A)
> Taylor expand: f(1) = f(0) + £ (0) + 1" (0) +...
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Hartree-Fock theory in second quantization

Transformed creation operator
@ Using the BCH expansion with A = —& and B = al we get

1

@ To evaluate the commutator [/’%, aﬂ we use our rule

{Aé,é} :A[é,éLf [A,CL@

@ ..which gives

S —

[%,ai} = Zfipq [alaq,aj] = Z/-c,,q a,T, [aq,a L — [az,,ai] ag p = Zfipra};
Pq pq P
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Hartree-Fock theory in second quantization

Transformed creation operator
@ We proceed to the next commutator
['%7 |:’%? ali” = Z Kpr |K [ ] Z Kprkqpd Il Z
p q

@ We start to see a pattern

1
3 = al - [@,ai] +2 [e, [g,aiﬂ _
1 2
- Y 2 0%
P q

- Z 5Priﬁpr+§(ﬁ )pri"' aP

p
= Z a;ry {EXp [_K/]}pr

P
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Hartree-Fock theory in second quantization

Transformed creation operator

@ To connect to orbital rotations we recall the formula
o= [ Oenle)er
@ ...from which we obtain
3= Y ablew -, = X [ 9 0pne) (exp [l d'r = [ 3 050
P P

@ which provides the connection

0) =exp (=R)[0) = &= wp(r) {exp[~rl},
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Density functional theory in second quantization

The central quantity of DFT is the (charge) density p(r)
It is an observable and therefore expressible as an expectation value

N
p(r)=—e <w > (- \u>
i=1
In second quantization the charge density operator is
5 = _e/w (VB (-0 d () ':—ez<<pp
—e Z Qpq (r) a:r,aq; Qpq (r) = ‘Pp (r) ¢q (r)
Pq

r —r ‘npq> af,aq

Just as in Hartree-Fock we may choose an exponential parametrization for the
Kohn-Sham determinant )
6) = exp (~#)[0)
such that the charge density is parametrized as
> = erqu

i) = -3 0p () o (1) (0
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Wave-function based correlation methods

@ Hartree-Fock theory is the starting point for wave-function based correlation methods in

that ., }
E exact _ EHF + Ecorr

@ This is where second quantization really shows its teeth

e The Configuration Interaction (Cl) method employs a linear parametrization
|Cl) = (1 + C) |HF); C= Zc alaj+ = Zc,j’bafabaja,
ijab
@ The Coupled Cluster (CC) method employs an exponential parametrization
|CC) = exp (?’) |HF); T= Z tlala; + -~ Z te"ala)aja; +
ia ijab
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Matrix elements

@ Calculating the matrix element of a one-electron operator Q
for a two-electron system (N = 2):

Qomn = (m|Qn) = Zqu<m|a;r,aq|n); Im) = alal [vac); |n) = aa) |vac)
pq

@ .. amounts to evaluating the vacuum expectation value

(vac|asa,a;f,aqaiazlvac>
o Based on the relations
dplvac) =0, Vap; (vac|d=0; Va

@ Our strategy will be to move creation operators to the left and annihilation operators to
the right, that is, we bring the operator string on normal-ordered form.
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Matrix elements

o We start by using our commutator rule

[AB’, é] =A

@ .. to obtain

(vac|asa,a;£aq alal|vac)

Trond Saue (LCPQ, Toulouse)

>
[ve )
e

(vac]| (a};asa, + [asa,, 32;]) agalal|vac)

(vac| (as [a,,a:EL — [as,a£]+ a,) agalal|vac)

<V3C| (asarp - 5Spaf) aan az|VaC>
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Matrix elements

@ We next develop an analogous commutator rule
[A.BE] = [AB] ¢-B[A(]
+ +
@ .. such that
(vac|asa,a;f,aqala:f,|vac> = (vac|(asérp — dspar) (aIaIaq + [aq,alaz]) |vac)

= (vac|(asérp — dspar) <[aq, aI] . al — a;f [aq, az] +) |vac)

(vac| (asérp — dspar) (6qtaz — aiéqu) |vac)

@ The final expression is
(vac|asa,a,T,aanaZ|vac> = 81p0qtOsy — OrpOqulst — OspOqtOry + OspOqulrt
@ The final expression is
Qunn = (prps|Q0pepu) = by — Qubt = Vst + Qe
e We quickly run out of steam; we need more powerful tools !
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Let us bring out some bigger guns...

(Wick'ed guys)
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Normal ordering

Definition
e Writing an operator string O on normal-ordered form { O } corresponds to moving all

creation operators to the left and all annihilation operators to the left as if they all

anticommuted, e.g.

_ . (P 0 G |
{apag} = apag; {apaq = dpdq
T N U G T
@ A more complicated example is
{asa,apaqatau} {apasa,aqat au} = — {apat asa,aqau} = apazafasaraq

@ The vacuum expectation value of a normal-ordered operator string is zero

(vac {0} vac) =0

Second quantization
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Contraction

@ A contraction is defined as
(il
xy = xy — {xy}

@ There are four possible combinations

ff 1t Tt Tt Tt )

apag = apag — {apagy = apag — apag = O
—

apag = apdg — {apagl, = apag — apag =
aba, = aba, — {aha = aba, — aba

pdq = dpdq pdqy = dpdq pdq

o f i f i

apag = apag — dpag¢ = apag + agap = Opg

@ The only non-zero contraction occurs when an annihilation operator appears to the left of
a creation operator.

Trond Saue (LCPQ, Toulouse) Second quantization ESQC 2019 26 /37



Wick’s theorem

normal-ordered strings.

An operator string may be written as a linear combination of

ABC...XYZ = {ABC...XYZ}
i
+ 0> {ABC...XYZ}
singles
—F— 1
+ Y. {ABC...XYZ
doubles
_|_

Only fully contracted terms contribute to vacuum expectation values.
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Wick’s theorem: example

@ Returning to our one-electron expectation value we find that
1
(vac|asa,a;r,aqaial|vac) = (vac|asa,a;r,aqa1al|vac>
+ (vac|as¢;alaqaiaz|vac)
 T=n]
+ (vaclasarapaqa; a,|vac)
+ (vac|asa,a}aga)a|vac)
p9qet “u

e Signs of fully contracted contributions are given by (—1)*
where k is the number of crossing lines.
@ We again obtain

(vac|asa,alaanaZ|vac) = 01p0qtOsy — OrpOqulst — OspOqtOry + IspOqulre
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Matrix elements

@ We have seen that any matrix element over a string of creation- and annihilation
operators can be expressed as a vacuum expectation value and then evaluated using
Wick's theorem, e.g.

Qonn = (m|Qn) = Z Q,,q(vac|asa,a};aqazaz\vac)
Pq

@ However, with an increasing number N of electrons the operator strings become long and
the evaluation tedious.

@ We need even bigger guns
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Let us look at the vacuum state

@ We have seen that the vacuum expectation value of a normal-ordered string is zero.
@ A prime example is

(vac|H|vac) = (vac| Zh qa g+ = Z Vg, ,Sa as§,|vac> =0

pq,rs

(we dropped V)
@ The vacuum state can be defined as the “empty” state

|vac) =|0,0,0,...,0),
@ ..alternatively as the occupation-number vector for which

ap|vac) =0; Va,
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Particle-hole formalism

@ Let us consider the occupation-number vector |0) corresponding to some reference
determinant &g, e.g. the Hartree-Fock determinant.

@ As before we introduce orbital classes with respect to this reference

> occupied orbitals: i,j, k,/,...
» virtual (unoccupied) orbitals: a, b, c,d, ...

@ We observe the following
2:10) = af [0) = 0 Va,,a]

» with respect to the reference a, and a,-T act as annihilation operators
> their conjugates al and a; act as creation operators
» al creates an electron (particle), whereas a; creates a vacancy (hole)

@ Using Wick’s theorem, we will express all operators in terms of normal-ordering with
respect to the new reference, the Fermi vacuum. This also changes the zero of energy.
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The normal-ordered electronic Hamiltonian

One-electron part

@ Using Wick’s theorem the one-electron part of the Hamiltonian becomes
Fy = hpgalag = thq ({a ag}y + {a aq} )
pq

@ Recall that the only non-zero contraction appears when a annihilation operator appears to
the left of a creation operator
@ This only happens when both p and g refer to occupied orbitals, giving

A, = Z hpg ({a;f,aq}o + (5pq5pe;> = Z hpq {alaq}o + Z hii
pq pa i
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The normal-ordered electronic Hamiltonian

Two-electron part

@ For the two-electron part
~ o1
=3 > Vogrsahahasar
pg,rs

non-zero contractions only occur if p or g refer to occupied orbitals such that the
corresponding operators é,T, and ?91, are annihilators with respect to the Fermi vacuum.

@ Non-zero double contractions are

|
{alagasar} = —Opeidpsqejdar
0
M
{az,ai,asa,} = OpeiOprigejdgs
0
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The normal-ordered electronic Hamiltonian

Two-electron part

@ Non-zero single contractions are

e [
{a;f,agasa,}o = - {a;f,asa};a,}o = —0peilps {agar}o
e o
{a;f,a:;asa,}o = {a);a,a:;as}o = peilpr {agas}o
[
{a;r,al;asa,}o = lgeilgs {ala,}o
. o
{a;f,a:gasa,}o = — {azagaras}o = —0q4cibqr {azas}o
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The normal-ordered electronic Hamiltonian

..almost there

@ From the non-zero double contractions we get

1 1
5 2 Voars (Opeipriaeifes — Opcidpsdocibar) = 5 Y (Vij — Viji) = £

Pq,rs ij

@ From the non-zero single contractions we get

Z Vig,rs (5pe:5pr {a ‘95} Opeid {a a,}o)

pq rs
1
+ 5 Z qu,rs (5q€i5qs alar}o - 5q€i5qr {azas}o)
Pq,rs
_ EZV. . {aTa} _EZV. -{aTa}
2 2 iq,is q9s o 22 iq,ri qdr 0
iq,s iq,r
1 ; 1 ;
+ 5 Z Vpi,ri {apar} - 5 Z Vpi,is {apas}o
pi,r pi,s
= Z (Vpi,gi = Viisig) {3:7317}0
pq,i,
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The normal-ordered electronic Hamiltonian

Final form

@ The final form of the electronic Hamiltonian is

1
o) <h,,q -3 Vi Vi ) {sfan) + 15" Voo {slofaca}

pg,rs

2]

= E —I—HN

@ where appears the HF energy
E" = (0|A)0) = Zhu+ 5 Z(VM

@ and the normal-ordered electronic Hamiltonian

Fiv =" oo {shaa} + 5 3 Vo {abolsar |, = H  010)
Pq

pa.rs

e This result can be generalized: Qn = {2 — (0/Q2/0)
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Final words

@ The second quantization formalism provides a powerful language for the formulation and
implementation of quantum chemical methods

@ Matrix elements over second quantized operators split into integrals over the operator in
the chosen orbital basis and a vacuum expectation value.

@ For the formulation of wave-function based electron correlation methods second
quantization becomes an indispensable tool.

@ Further sophistication is provided by Wick's theorem, the particle-hole formalism and ...
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