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Where we stopped last time

Second quantization starts from field operators ψ†(1), ψ(1) sampling the electron field
in space. It provides a very convenient language for the formulation and implementation
of quantum chemical methods.

Occupation number vectors (ONVs) are defined with respect to some (orthonormal)
orbital set {ϕp(r)}Mp=1

Their occupation numbers are manipulated using creation- and annihilation operators,
â†p and âp, which are conjugates of each other.

The algebra of these operators is summarized
by anti-commutator relations[

â†p, â
†
q

]
+

= 0; [âp, âq]+ = 0;
[
âp, â

†
q

]
+

= δpq

and reflects the fermionic nature of electrons.
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What about spin ?

By convention, the z-axis is chosen as spin-axis such that the electron spin functions
|s,ms〉 are eigenfunctions of ŝ2 and ŝz

ŝ2 |s,ms〉 = s (s + 1) |s,ms〉 ; ŝz |s,ms〉 = ms |s,ms〉

It is also convenient to introduce step operators
ŝ+ = ŝx + i ŝy and ŝ− = ŝx − i ŝy

ŝ± |s,ms〉 =
√
s (s + 1)−ms (ms ± 1) |s,ms ± 1〉

Electrons are spin- 1
2 particles with spin functions denoted |α〉 =

∣∣1
2 ,

1
2

〉
and |β〉 =

∣∣1
2 ,−

1
2

〉
.

The action of the spin operators is summarized by

ŝ2 ŝz ŝ+ ŝ−
|α〉 3

4 |α〉
1
2 |α〉 0 |β〉

|β〉 3
4 |β〉 −

1
2 |β〉 |α〉 0
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Spin in second quantization

We may separate out spin from spatial parts of the creation-
and annihilation operators, giving[

â†pσ, â
†
qσ′

]
+

= 0; [âpσ, âqσ′ ]
+

= 0;
[
âpσ, â

†
qσ′

]
+

= δpqδσσ′ ; σ, σ′ = α orβ

We may also separate out spin in the electronic Hamiltonian.
For the (non-relativistic) one-electron part we obtain

Ĥ1 =
∑
pq

∑
σ,σ′

〈ϕpσ|ĥ|ϕqσ
′〉â†pσ âqσ′

=
∑
pq

∑
σ,σ′

〈ϕp|ĥ|ϕq〉〈σ|σ′〉â†pσ âqσ′

=
∑
pq

∑
σ,σ′

〈ϕp|ĥ|ϕq〉δσσ′ â†pσ âqσ′

=
∑
pq

〈ϕp|ĥ|ϕq〉Epq; Epq =
∑
σ

â†pσ âqσ

Trond Saue (LCPQ, Toulouse) Second quantization ESQC 2019 3 / 37



Spin in second quantization

For the (non-relativistic) two-electron part we obtain

Ĥ2 =
1

2

∑
pqrs

∑
στσ′τ ′

〈ϕpσϕqτ |ĝ |ϕrσ
′ϕsτ

′〉a†pσa†qτasτ ′arσ′

=
1

2

∑
pqrs

∑
στσ′τ ′

〈ϕpϕq|ĝ |ϕrϕs〉〈σ|σ′〉〈τ |τ ′〉a†pσa†qτasτ ′arσ′

=
1

2

∑
pqrs

∑
στσ′τ ′

〈ϕpϕq|ĝ |ϕrϕs〉δσσ′δττ ′a
†
pσa
†
qτasτ ′arσ′

=
1

2

∑
pqrs

∑
στσ′τ ′

〈ϕpϕq|ĝ |ϕrϕs〉epq,rs ; epq,rs =
∑
στ

a†pσa
†
qτasτarσ

Operator algebra

a†pσa
†
qτasτ ′arσ′ = −a†pσa†qτarσasτ = a†pσarσa

†
qτasτ − δqrδστa†pσasτ

.. shows that
epq,rs = EprEqs − δrqEps
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Hartree-Fock theory in second quantization
Reference ONV and orbital classes

In first quantization language the Hartree-Fock method employs a single Slater
determinant as trial function.

In second quantization we start from some orthonormal orbital basis {ϕp}Mp=1 , which
defines our Fock space, and build a reference ONV in that space

|0〉 = â†1â
†
2 . . . â

†
N |vac〉 = |1, 1, 1, 1,︸ ︷︷ ︸

N

0, . . . , 0〉︸ ︷︷ ︸
M−N

For further manipulations it is useful to introduce orbital classes:

I occupied orbitals: i , j , k, l , . . .
I virtual (unoccupied) orbitals: a, b, c, d , . . .
I general orbitals: p, q, r , s, . . .
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Hartree-Fock theory in second quantization
Hartree-Fock energy

EHF = 〈0|Ĥ|0〉 = 〈0|
∑
pq

hpq â
†
p âq +

1

2

∑
pq,rs

Vpq,rs â
†
p â
†
q âs âr |0〉+ Vnn

One-electron energy
EHF

1 =
∑
pq

hpq〈0|â†p âq|0〉

I The operator âq tries to remove an electron to the right;
this is only possible if orbital q is occupied.

I Likewise, the operator â†p tries to remove an electron to the left;
this is only possible if orbital p is occupied.

I The final ONVs created left and right by these processes must be the same
(to within a phase) for a non-zero inner product.

We conclude
EHF

1 =
∑
i

hii
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Hartree-Fock theory in second quantization
Hartree-Fock energy

Two-electron energy

EHF
2 =

1

2

∑
pq,rs

Vpq,rs〈0|â†p â†q âs âr |0〉

I Operators âr and âs both try to remove an electron to the right;
orbitals r and s must be occupied, but not identical

I Operators â†p and â†q both try to remove an electron to the left;
orbitals p and q must be occupied, but not identical

I The final ONVs created left and right by these processes must be the same
(to within a phase) for a non-zero inner product.

I There are two possibilites

EHF
2 =

1

2

∑
i 6=j

{
Vij,ij〈0|â†i â

†
j âj âi |0〉+ Vij,ji 〈0|â†i â

†
j âi âj |0〉

}
The final expression is

EHF
2 =

1

2

∑
i 6=j

{Vij,ij − Vij,ji} =
1

2

∑
ij

〈ϕiϕj ‖ ϕiϕj〉
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Hartree-Fock theory in second quantization
Stationarity condition

The Hartree-Fock energy is a functional of the occupied orbitals

EHF [{ϕi}] =
∑
i

〈ϕi |ĥ|ϕi 〉+
1

2

∑
ij

〈ϕiϕj ‖ ϕiϕj〉+ Vnn

.. and is minimized under the constraint of orthonormal orbitals

〈ϕi |ϕj〉 = δij

This is normally done by the introduction of Lagrange multipliers

LHF [{ϕi}] = EHF [{ϕi}]−
∑
ij

λij {〈ϕi |ϕj〉 − δij}

Is it possible to achieve minimization without constraints ?
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Hartree-Fock theory in second quantization
Parametrization

Suppose that we generate the optimized orbitals by transforming the initial orthonormal
set {ϕp}Mp=1

ϕ̃p =
∑
q

ϕqcqp

and use the expansion coefficients {cqp} as variational parameters ?

In order to preserve orthonormality the expansion coeffients must obey

〈ϕ̃p|ϕ̃q〉 =
∑
rs

〈ϕrcrp|ϕscsq〉 =
∑
rs

〈ϕr |ϕs〉︸ ︷︷ ︸
δrs

c∗rpcsq =
∑
r

c∗rpcrq = δpq

..which means that they must form a unitary (orthogonal) matrix for complex (real)
orbitals: C †C = I

This adds 1
2M(M + 1) constraints,

and so we can not vary the coefficients freely.
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Hartree-Fock theory in second quantization
Matrix exponentials

We can, however, circumvent these constraints by writing the matrix as an exponential
of another matrix

U = exp(A)

You recall (I hope) that the exponential of a (complex or real) number is

exp(a) = ea =
∞∑
k=0

ak

k!

We have some simple rules, e.g.

eaeb = ea+b; ⇒ e−aea = 1

With matrices we have to be more careful, because, like operators,
they generally do not commute.
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Hartree-Fock theory in second quantization
Matrix exponentials

In perfect analogy with numbers we define

exp(A) =
∞∑
k=0

Ak

k!

We next consider the product

exp(A) exp(B) =
∞∑
m=0

∞∑
n=0

Am

m!

Bn

n!

We rearrange to collect contribution of order k = m + n

exp(A) exp(B) =
∞∑
k=0

k∑
m=0

Am

m!

Bk−m

(k −m)!
=
∞∑
k=0

1

k!

k∑
m=0

(
k
m

)
AmBk−m

With numbers, we obtain our desired result eaeb = ea+b by recognizing that

(a + b)k =
k∑

m=0

(
k
m

)
ambk−m;

(
k
m

)
=

k!

m! (k −m)!
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Hartree-Fock theory in second quantization
Matrix exponentials

With matrices this does not work, for instance

(A + B)2 = A2 + AB + BA + B2 6= A2 + 2AB + B2

since, generally [A,B] 6= 0

However, [A, (−A)] = 0, so we can use this rule to obtain that

exp(A) exp(−A) = I ; [exp(A)]−1 = exp(−A)

It is also straightforward to show that

exp(A)† = exp
(
A†
)

A unitary matrix is defined by U−1 = U† which is obtained by using an anti-Hermitian A

A† = −A
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Hartree-Fock theory in second quantization
Exponential parametrization

We avoid Lagrange multipliers (constraints) by expressing the optimized orbitals as

ϕ̃p =
∑
q

ϕqUqp; U = exp (−κ) ; κ† = −κ

I will now show that this corresponds to writing the optimized HF occupation-number
vector as ∣∣0̃〉 = exp (−κ̂) |0〉

where κ̂ is an orbital rotation operator with amplitudes κpq

κ̂ =
∑
pq

κpq â
†
p âq; κpq = −κ∗qp
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Hartree-Fock theory in second quantization
Exponential parametrization

We start by the expansion

∣∣0̃〉 = exp (−κ̂) |0〉 = exp (−κ̂) a†1a
†
2 . . . a

†
N |vac〉

Next, we insert exp (κ̂) exp (−κ̂) = 1 everywhere

∣∣0̃〉 = exp (−κ̂) a†1exp (κ̂) exp (−κ̂)a†2 exp (κ̂) . . . exp (−κ̂) a†Nexp (κ̂) exp (−κ̂) |vac〉

= ã†1 ã
†
2 . . . ã

†
N exp (−κ̂) |vac〉 ; ã†r = exp (−κ̂) a†r exp (κ̂)

First, we note that

κ̂ |vac〉 =
∑
pq

κpqa
†
paq |vac〉 = 0;

⇒ exp (−κ̂) |vac〉 =

(
1− κ̂+

1

2
κ̂2 − . . .

)
|vac〉 = |vac〉
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Hartree-Fock theory in second quantization
Baker-Campbell-Hausdorff expansion

Baker Campbell Hausdorff

We next use the Baker-Campbell-Hausdorff expansion

exp(A)B exp(−A) = B + [A,B] +
1

2
[A, [A,B]] + . . . =

∞∑
k=0

1

k!
[A,B](k)

Proof: We introduce f (λ) = exp(λA)B exp(−λA) and note that

I f (0) = B
I f (1) = exp(A)B exp(−A)
I Taylor expand: f (1) = f (0) + f ′ (0) + 1

2 f
′′ (0) + . . .
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Hartree-Fock theory in second quantization
Transformed creation operator

Using the BCH expansion with A = −κ̂ and B = a†r we get

ã†r = exp (−κ̂) a†r exp (κ̂) = a†r −
[
κ̂, a†r

]
+

1

2

[
κ̂,
[
κ̂, a†r

]]
− . . .

To evaluate the commutator
[
κ̂, a†r

]
we use our rule[

ÂB̂, Ĉ
]

= Â
[
B̂, Ĉ

]
+
−
[
Â, Ĉ

]
+

B̂

..which gives

[
κ̂, a†r

]
=
∑
pq

κpq

[
a†paq, a

†
r

]
=
∑
pq

κpq

a†p

[
aq, a

†
r

]
+︸ ︷︷ ︸

δqr

−
[
a†p, a

†
r

]
+︸ ︷︷ ︸

0

aq

 =
∑
p

κpra
†
p
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Hartree-Fock theory in second quantization
Transformed creation operator

We proceed to the next commutator[
κ̂,
[
κ̂, a†r

]]
=
∑
p

κpr

[
κ̂, a†p

]
=
∑
pq

κprκqpa
†
q =

∑
q

(
κ2
)
qr
a†q

We start to see a pattern

ã†r = a†r −
[
κ̂, a†r

]
+

1

2

[
κ̂,
[
κ̂, a†r

]]
− . . .

= a†r −
∑
p

κpra
†
p +

1

2

∑
q

(
κ2
)
qr
a†q − . . .

=
∑
p

(
δpr − κpr +

1

2

(
κ2
)
pr
− . . .

)
a†p

=
∑
p

a†p {exp [−κ]}pr
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Hartree-Fock theory in second quantization
Transformed creation operator

To connect to orbital rotations we recall the formula

a†p =

ˆ
ψ̂†(r)ϕp(r)d3r

...from which we obtain

ã†r =
∑
p

a†p {exp [−κ]}pr =
∑
p

ˆ
ψ̂†(r)ϕp(r) {exp [−κ]}pr d3r =

ˆ
ψ̂†(r)ϕ̃r (r)d3r

which provides the connection∣∣0̃〉 = exp (−κ̂) |0〉 ⇒ ϕ̃r =
∑
p

ϕp(r) {exp [−κ]}pr
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Density functional theory in second quantization

The central quantity of DFT is the (charge) density ρ (r)
It is an observable and therefore expressible as an expectation value

ρ (r) = −e

〈
Ψ

∣∣∣∣∣
N∑
i=1

δ3 (ri − r)

∣∣∣∣∣Ψ

〉
In second quantization the charge density operator is

ρ̂ = −e
ˆ
ψ̂†
(
r′
)
δ3 (r′ − r

)
ψ̂
(
r′
)

d3r′ = −e
∑
pq

〈
ϕp

∣∣∣δ3 (r′ − r
)∣∣∣ϕq

〉
a†paq

= −e
∑
pq

Ωpq (r) a†paq; Ωpq (r) = ϕ†p (r)ϕq (r)

Just as in Hartree-Fock we may choose an exponential parametrization for the
Kohn-Sham determinant ∣∣0̃〉 = exp (−κ̂) |0〉
such that the charge density is parametrized as

ρ̃ (r, κ) = −e
∑
pq

ϕ†p (r)ϕq (r)
〈

0̃
∣∣∣a†paq∣∣∣ 0̃

〉
= −e

∑
pq

Ωpq (r)Dpq (κ)
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Wave-function based correlation methods

Hartree-Fock theory is the starting point for wave-function based correlation methods in
that

E”exact” = EHF + Ecorr

This is where second quantization really shows its teeth

The Configuration Interaction (CI) method employs a linear parametrization

|CI 〉 =
(

1 + Ĉ
)
|HF 〉 ; Ĉ =

∑
ia

cai a
†
aai +

1

4

∑
ijab

cabij a
†
aa
†
bajai + . . .

The Coupled Cluster (CC) method employs an exponential parametrization

|CC〉 = exp
(
T̂
)
|HF 〉 ; T̂ =

∑
ia

tai a
†
aai +

1

4

∑
ijab

tabij a
†
aa
†
bajai + . . .
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Matrix elements

Calculating the matrix element of a one-electron operator Ω̂
for a two-electron system (N = 2):

Ωmn = 〈m|Ω̂|n〉 =
∑
pq

Ωpq〈m|a†paq|n〉; |m〉 = a†r a
†
s |vac〉 ; |n〉 = a†t a

†
u |vac〉

.. amounts to evaluating the vacuum expectation value

〈vac|asara†paqa
†
ta
†
u|vac〉

Based on the relations

âp |vac〉 = 0, ∀âp; 〈vac| â†p = 0; ∀â†p

Our strategy will be to move creation operators to the left and annihilation operators to
the right, that is, we bring the operator string on normal-ordered form.
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Matrix elements

We start by using our commutator rule[
ÂB̂, Ĉ

]
= Â

[
B̂, Ĉ

]
+
−
[
Â, Ĉ

]
+

B̂

.. to obtain

〈vac|asara†paqa†t a†u|vac〉 = 〈vac|
(
a†pasar +

[
asar , a

†
p

])
aqa
†
t a
†
u|vac〉

= 〈vac|
(
as
[
ar , a

†
p

]
+
−
[
as , a

†
p

]
+
ar

)
aqa
†
t a
†
u|vac〉

= 〈vac| (asδrp − δspar ) aqa†t a†u|vac〉

Trond Saue (LCPQ, Toulouse) Second quantization ESQC 2019 22 / 37



Matrix elements

We next develop an analogous commutator rule[
Â, B̂Ĉ

]
=
[
Â, B̂

]
+

Ĉ− B̂
[
Â, Ĉ

]
+

.. such that

〈vac|asara†paqa
†
t a
†
u |vac〉 = 〈vac| (asδrp − δspar )

(
a†t a
†
uaq +

[
aq , a

†
t a
†
u

])
|vac〉

= 〈vac| (asδrp − δspar )

([
aq , a

†
t

]
+
a†u − a†t

[
aq , a

†
u

]
+

)
|vac〉

= 〈vac| (asδrp − δspar )
(
δqta
†
u − a†t δqu

)
|vac〉

The final expression is

〈vac|asara†paqa†t a†u|vac〉 = δrpδqtδsu − δrpδquδst − δspδqtδru + δspδquδrt

The final expression is

Ωmn = 〈ϕrϕs |Ω̂|ϕtϕu〉 = Ωrtδsu − Ωruδst − Ωstδru + Ωsuδrt

We quickly run out of steam; we need more powerful tools !
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Let us bring out some bigger guns...

(Wick’ed guys)
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Normal ordering
Definition

Writing an operator string Ô on normal-ordered form
{
Ô
}

corresponds to moving all

creation operators to the left and all annihilation operators to the left as if they all
anticommuted, e.g.

{apaq} = apaq;
{
a†pa
†
q

}
= a†pa

†
q{

a†paq
}

= a†paq;
{
apa
†
q

}
= −a†qap

A more complicated example is{
asara

†
paqa

†
t a
†
u

}
=
{
a†pasaraqa

†
t a
†
u

}
= −

{
a†pa
†
t asaraqa

†
u

}
= a†pa

†
t a
†
uasaraq

The vacuum expectation value of a normal-ordered operator string is zero〈
vac

∣∣∣{Ô}∣∣∣ vac〉 = 0
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Contraction

A contraction is defined as
xy = xy − {xy}

There are four possible combinations

a†pa
†
q = a†pa

†
q −

{
a†pa
†
q

}
= a†pa

†
q − a†pa

†
q = 0

apaq = apaq − {apaq}v = apaq − apaq = 0

a†paq = a†paq −
{
a†paq

}
= a†paq − a†paq = 0

apa
†
q = apa

†
q −

{
apa
†
q

}
= apa

†
q + a†qap = δpq

The only non-zero contraction occurs when an annihilation operator appears to the left of
a creation operator.
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Wick’s theorem

An operator string may be written as a linear combination of
normal-ordered strings.

ABC . . .XYZ = {ABC . . .XYZ}

+
∑

singles

{
ABC . . .XYZ

}

+
∑

doubles

{
ABC . . .XYZ

}
+ . . .

Only fully contracted terms contribute to vacuum expectation values.
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Wick’s theorem: example

Returning to our one-electron expectation value we find that

〈vac|asara†paqa†t a†u|vac〉 = 〈vac|asara†paqa†t a†u|vac〉

+ 〈vac|asara†paqa†t a†u|vac〉

+ 〈vac|asara†paqa†t a†u|vac〉

+ 〈vac|asara†paqa†t a†u|vac〉

Signs of fully contracted contributions are given by (−1)k

where k is the number of crossing lines.

We again obtain

〈vac|asara†paqa†t a†u|vac〉 = δrpδqtδsu − δrpδquδst − δspδqtδru + δspδquδrt
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Matrix elements

We have seen that any matrix element over a string of creation- and annihilation
operators can be expressed as a vacuum expectation value and then evaluated using
Wick’s theorem, e.g.

Ωmn = 〈m|Ω̂|n〉 =
∑
pq

Ωpq〈vac|asara†paqa†t a†u|vac〉

However, with an increasing number N of electrons the operator strings become long and
the evaluation tedious.
We need even bigger guns
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Let us look at the vacuum state

We have seen that the vacuum expectation value of a normal-ordered string is zero.

A prime example is

〈vac|Ĥ|vac〉 = 〈vac|
∑
pq

hpq â
†
p âq +

1

2

∑
pq,rs

Vpq,rs â
†
p â

†
q âs âr |vac〉 = 0

(we dropped Vnn)

The vacuum state can be defined as the “empty” state

|vac〉 = |0, 0, 0, . . . , 0〉 ,

..alternatively as the occupation-number vector for which

âp |vac〉 = 0; ∀âp
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Particle-hole formalism

Let us consider the occupation-number vector |0〉 corresponding to some reference
determinant Φ0, e.g. the Hartree-Fock determinant.

As before we introduce orbital classes with respect to this reference

I occupied orbitals: i , j , k, l , . . .
I virtual (unoccupied) orbitals: a, b, c, d , . . .

We observe the following
aa |0〉 = a†i |0〉 = 0; ∀aa, a†i

I with respect to the reference aa and a†i act as annihilation operators
I their conjugates a†a and ai act as creation operators
I a†a creates an electron (particle), whereas ai creates a vacancy (hole)

Using Wick’s theorem, we will express all operators in terms of normal-ordering with
respect to the new reference, the Fermi vacuum. This also changes the zero of energy.
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The normal-ordered electronic Hamiltonian
One-electron part

Using Wick’s theorem the one-electron part of the Hamiltonian becomes

Ĥ1 =
∑
pq

hpqa
†
paq =

∑
pq

hpq
({

a†paq
}

0
+
{
a†paq

}
0

)
Recall that the only non-zero contraction appears when a annihilation operator appears to
the left of a creation operator

This only happens when both p and q refer to occupied orbitals, giving

Ĥ1 =
∑
pq

hpq
({

a†paq
}

0
+ δpqδp∈i

)
=
∑
pq

hpq
{
a†paq

}
0

+
∑
i

hii
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The normal-ordered electronic Hamiltonian
Two-electron part

For the two-electron part

Ĥ =
1

2

∑
pq,rs

Vpq,rsa
†
pa
†
qasar

non-zero contractions only occur if p or q refer to occupied orbitals such that the
corresponding operators â†p and â†q are annihilators with respect to the Fermi vacuum.

Non-zero double contractions are{
a†pa
†
qasar

}
0

= −δp∈iδpsδq∈jδqr

{
a†pa
†
qasar

}
0

= δp∈iδprδq∈jδqs
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The normal-ordered electronic Hamiltonian
Two-electron part

Non-zero single contractions are{
a†pa

†
qasar

}
0

= −
{
a†pasa

†
qar
}

0
= −δp∈iδps

{
a†qar

}
0{

a†pa
†
qasar

}
0

=
{
a†para

†
qas
}

0
= δp∈iδpr

{
a†qas

}
0{

a†pa
†
qasar

}
0

= δq∈iδqs
{
a†par

}
0{

a†pa
†
qasar

}
0

= −
{
a†pa

†
qaras

}
0

= −δq∈iδqr
{
a†pas

}
0
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The normal-ordered electronic Hamiltonian
..almost there

From the non-zero double contractions we get
1

2

∑
pq,rs

Vpq,rs (δp∈iδprδq∈jδqs − δp∈iδpsδq∈jδqr ) =
1

2

∑
ij

(Vij,ij − Vij,ji ) = EHF
2

From the non-zero single contractions we get
1

2

∑
pq,rs

Vpq,rs

(
δp∈iδpr

{
a†qas

}
0
− δp∈iδps

{
a†qar

}
0

)
+

1

2

∑
pq,rs

Vpq,rs

(
δq∈iδqs

{
a†par

}
0
− δq∈iδqr

{
a†pas

}
0

)
=

1

2

∑
iq,s

Viq,is

{
a†qas

}
0
− 1

2

∑
iq,r

Viq,ri

{
a†qar

}
0

+
1

2

∑
pi,r

Vpi,ri

{
a†par

}
− 1

2

∑
pi,s

Vpi,is

{
a†pas

}
0

=
∑
pq,i,

(Vpi,qi − Vpi,iq)
{
a†paq

}
0
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The normal-ordered electronic Hamiltonian
Final form

The final form of the electronic Hamiltonian is

Ĥ = EHF +
∑
pq

(
hpq +

∑
i

(Vpi,qi − Vpi,iq)

){
a†paq

}
0

+
1

2

∑
pq,rs

Vpq,rs

{
a†pa
†
qasar

}
0

= EHF + ĤN

where appears the HF energy

EHF = 〈0|Ĥ|0〉 =
∑
i

hii +
1

2

∑
ij

(Vij,ij − Vij,ji )

and the normal-ordered electronic Hamiltonian

ĤN =
∑
pq

fpq
{
a†paq

}
0

+
1

2

∑
pq,rs

Vpq,rs

{
a†pa
†
qasar

}
0

= Ĥ − 〈0|Ĥ|0〉

This result can be generalized: Ω̂N = Ω̂− 〈0|Ω̂|0〉
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Final words

The second quantization formalism provides a powerful language for the formulation and
implementation of quantum chemical methods
Matrix elements over second quantized operators split into integrals over the operator in
the chosen orbital basis and a vacuum expectation value.
For the formulation of wave-function based electron correlation methods second
quantization becomes an indispensable tool.
Further sophistication is provided by Wick’s theorem, the particle-hole formalism and ...
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