ESQC 2019

POW/2019

Mathematics

A refresher

Per-Olof Widmark

Theoretical Chemistry
Chemistry Department
Lund University

ESQC 2019



Outline

Numbers
Derivatives

Calculus of variation
Vectors

Levi-Civita et. al.
Vector calculus
Vector spaces
Operators

Matrices
Distributions

Decompositions

Diagonalizing matrices

ESQC 2019

POW/2019

Numbers
Derivatives

Calculus of
variation

Vectors
Levi-Civita et. al
Vector calculus
Vector spaces
Operators
Matrices
Distributions
Decompositions

Diagonalizing
matrices



Numbers ESQC 2019
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> Natural numbers, N: all whole non negative numbers, Numbers
0,1,234,....
> Integers, Z: all whole numbers ..., =3, =2, —1, 0, 1,
2,3, ...

» Rational numbers, Q: all numbers that can be written
as S where p and q are integers, g # 0.

» Irrational number, P: A number that is the limit of a
sequence of rational numbers but is not rational. For
example, Leibniz formula gives 7 which is an irrational

number
T 1 1 1
—=1—--+=-—Z+ ... 1
4 3ts 77 (1)

» Real numbers, R: all rational and irrational numbers.
» Complex numbers, C: all numbers of the form x + iy
where x and y are real and i is the imaginary unit

defined as i = —1.
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X+ iy
(x,¥)

F=/x2+y2

0 = arctan(y/x) Re




Complex numbers
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Numbers

In the formulas below we assume that z = x + iy,
z1 =x1 + iy1 and 2z = xp + iy».

>

From a set theory point of view: C = R?, an ordered
pair of real numbers (x,y).

Addition: z=2z1 + 2z = (x1 + x2) + i(y1 + y2)
Subtraction: z=2z1 —zo = (x1 — x2) + i(y1 — y2)
Multiplication:

z=2z120 = (x1x2 — y1y2) + i(x1y2 + xoy1)
Complex conjugate: z* = x — iy

(2122)" = 2123

Norm: |z| = Vzz* = \/x? + y?

z2zy _ z21zy
2

Division: z =24 = 222 =
> 227} |22
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Any point in R? can be represented in polar coordinates

{ x = rcos(0) )

y = rsin(0)

and this also holds true for C. Combine this with Eulers
formula

e’ = cos(f) + isin(h) (3)

we obtain

0

z=x+iy = re'® = rcos(f) + irsin(f). (4)



Operations on complex numbers ESQC 2019
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Using the polar representation makes certain operation
simpler. In the formulas below we assume that
z=x+liy = rel, z1 = x1 + iy1 = rief? and
Zo=Xxp + Iiyp = ryei?2.

» Multiplication: z = z; - zo0 = e’ i(

ﬂe’(el_GQ)
rn

» Square root: \/z = Vrel® = \/re?/?

» Finding roots: z3 =1 has roots 1, e
/3 — e=27i/3 by realizing that

12602627ri:e47ri:e67ri“'

01+62)

» Division: z = 4 =
22

27i/3 and



Roots of z" =1
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Derivatives

» Ordinary derivative of a function f(x) of one variable x:

df _ i FE hz =0 _ (1)

dx  h—0
» Partial derivative of a function f(x, y) of two variables
x and y with respect to x:
of . flx+hy)—flxy)
— = lim
Ox  h—0 h

= e

» Total derivative of a function f(x, y) of two variables x
and y with respect to x:

6_f = |lim f(X+hay(X+h))_f(Xay(X)) (3)
0x h—0 h
_ of  Of dy
- Ox * Jdy dx (4)
df

= (5)
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Total derivative

of
0x

f(x+ h,y(x+ h)) — f(x,y(x))

Il7i_n)10 h (6)
add

——f
lim f(X+th(X))_f(X7y(X)) (7)
h—0 h

subtract

im f(x+ h,y(x+h))—f(x+ h,y(x)) ()
h—0 h
of  Of dy
df (10)

dx
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Analytic functions ESQC 2019
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Consider a complex valued function f(z) of one complex
variable z = x + iy which can be written as Defivatives

f(2) = ulx,y) +iv(x,y) (11)

where x, y, u and v are real. When is the derivative well
defined using Az = Ax + iAy?

=@ = m S 02
= %Jri% (13)
N AJEOM%J/AV (14)

11
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The condition from above

ou Ov 10u Ov

leads to the Cauchy-Riemann condition

ou_ov ou__ov an
Ox 0dy Oy ox

This condition (and all four partial derivatives exist and are

continious) leads to a function that have a well defined

derivative f'(z), and such a function is called an analytic

function.

12



An analytic function

Consider the function

flz) = ¢ = extW
= ee¥ = eXcos(y) +ieXsin(y)
= ulx,y) +iv(x,y).

Evaluate the partial derivatives

gu = eXcos(y) =

Y = eSsin(y) =
5, = —€'sinly) = -
g—; = e*cos(y) =

All conditions are met thus &*

ou .0v
/ = — = =
f'(z) = I + l8 =u+iv=_¢°
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(18)

(19)

is an analytic function and

(20)

13



Why e*?

The function e is analytic for all values z # oo which mean
that the Taylor expansion

1, 1., 1 iy
e’ —1—|—z—|——z —|—§z —I——z—l— 7iZ (21)
k=0

is convergent for all z # co. We can define
Lok
=> X (22)
k=0

for basically any X! For example

U= eX; X is anti-Hermitian matrix, U is unitary
(23)

e’: Exponential ansatz in Coupled Cluster theory

(24)
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Functionals ESQC 2019
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» A function takes a number as input and returns a
number: y = f(x).
» A functional takes a function as input and returns a
number
> E[V] = I\U*F/\UdT
> Flpl = [ p?(r)|Vp(r)[Pd7, (GGA LYP)

15



Functional derivative

Consider a functional F[p] = [ G(x,p,p/,...)dx and let us
define the functional derivative

oF

" (25)
by
5—F¢dX — |im F[p + €¢] — F[p] (26)
op e—0 €
- [ @7)

where the functions p(x) and ¢(x) are chosen to fulfill the
boundary conditions of the problem.
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Example of functional derivative

Let us try to minimize the functional

Flo) = /0 (#Pdx; p(0) = 0;p(1) = 1. (28)

We then have that ¢(0) = ¢(1) = 0 in order to maintain the
boundary conditions for p 4+ €¢. Now use the defintion

oF
gﬂst

oF

lim fo P+ ed)’ 6 fo (') dx (29)
IR LR R G
e—>0 €
1
/ 20/ d (31)
0
1
209]5 ~ [ 20f"6ux (32)
0
—2p"(=0) (33)

ESQC 2019

POW/2019

Derivatives

17



Calculus of variation

Consider the problem: minimize the functional F with

respect to the function p subject to the conditions p(a) = p,

and p(b) = pp.

b
Fli = | Glxpus!) e
a
Make F stationary with respect to variations of p:

6F[p] = Flp+ ¢] — Flp]

where ¢ is “small”.

(1)

()

ESQC 2019
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Calculus of
variation
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Functional derivative

Replace p(x) with p(x) + ¢(x) with ¢(a) = ¢(b) =0 to
satisfy the boundary conditions.
oF = Flp+¢] - Flp] (3)
b b
= / G(X,p+¢,p’+¢>/)dx—/ G(x,p, ') )
broc oG ,
= /a <8—p¢+ —,¢> dx + O(¢°) (5)
bac 0G d 0G
- [ Gpesr [l [ ()
oG d oG
- [(G-ga)enme e @

functional derivative

ESQC 2019
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Calculus of
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The Euler-Lagrange equation

Minimizing the functional F|[p] leads to the Euler-Lagrange

equation

oF _ 06 _do6 _
Sp  Op dx9p

(8)

ESQC 2019
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Calculus of
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Example

What is the shortest distance between points (0,0) and
(1,1)? The length of a line segment is given by

ds = \/dx?> +dy? = /1 + (y')%dx

so the functional we want to minimize is

SIyl = / I+ ()2

ds

G(x,y") =/1+(¥)?

dx

(9)

(10)

ESQC 2019
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Calculus of
variation

21



ESQC 2019

Example

POW/2019

The functional does not depend on y directly so

Calculus of
variation

96 _do6c _ . . 096G _ _ (11)
dy  dx oy’ oy’
oG 1 —-1/2 y'

ay — 2 LUV @)=

massage this a bit and we get

’ c

y: 1_C2:

ki — y=kx+I, —» y=x
(13)



Extensions

Several dependent variables:

F:/G(Xaplapiap%péa"')

leads to a set of simultaneous equations

0G d oG

dp;  dx Op' -

Several independent variables:

op 0
/G X1,X2,...,p,8—xp1 852 )

yields the equation

006 _06 06
Ox; 0p. — Op oVp

ESQC 2019
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Extensions

Higher orders:

FZ/GWMMNWJ
yields

06 406 & 06
dp dx0p  dx?dp”

Unrestricted upper point:

b/aG d 06 oG 1°

/ (a—p‘&a—/f)@d”[a—ﬁ] =0
060G _ ., 96
dp dx0p ap’

(18)

(19)

(20)

(21)
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Vectors
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Coordinate system, basis vectors: &, é, and é&.
n-tuples: r = (ry,ry, 1) vs. v =réc+r,é, + & Vet

Row vector: r = (ry, ry, 1)

Column vector: r = (r,ry, ;)" = | r,

rz
Generalisation to n dimensions: r = (ry, ra, ... r,)"
Scalar product (alb) =a'b =37, ajb;
Norm: ||r|| = 1/(r|r) (Pythagorean theorem)

Vector product, cross product: & x &, = &, (Right
handed coordinate system, only in 3D)

26



Coordinates, basis vectors

» Right handed coordinate system

» Basis vectors: &, é, and é&,.

ESQC 2019
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Vectors

27



Scalar product

»a-b®ab +ab,+ab,=b-a

» a-b=(ala) =a'b

» a-b = |a||b|cosf

» ||a||> =a-a = asax + ayja, + a,a,; Norm, Pythagorean

theorem.
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Vector product

v

v

v

v

v

a><bd§f (aybz_azby7asz_axb27a><by_abe)T
axb=-bxa — axa=0
axblaand axb lb

la x b| = [a[|b]sin 6
éXXéy:éz; éyXéz:éx; é\z><é\X:éy

n

€z

ESQC 2019
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Useful relations

v

a(a + b) = aa + ab; distributive wrt mult. by scalar

v

a+ b = b + a; commutative addition
(a+b)+c=a+ (b+c); associative addition
» a-b =Db-a; commutative scalar product

v

» a x b= —b x a; anticommutative vector product

v

(@a+b)-c=a-c+b-c; distributive scalar product

v

(a+b) x c=a x c+ b x c; distributive vector product

v

a-(bxc)=b-(cxa)=c-(axb)=][a,b,c]; scalar
triple product, CAB rule.

v

a x (b x c) # (a x b) x c; not associative

v

ax (bxc)=(a-c)b—(a-b)c; vector triple product.

ESQC 2019

POW/2019

Vectors
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Tensor notation ESQC 2019
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» a; denote all components of a rank 1 tensor.

Levi-Civita et. al.

» a;; denote all components of a rank 2 tensor.

> a;bj = aiby + axby + ... + apb,; repeated indices imply
contraction (summation).

> ajbjCiy = D71 Dk AijbjkCia = ti

> ajj0j = aik

> dij=n

31



Levi-Civita

The Levi-Civita tensor can be defined as

Exyz = €yzx = €zxy = 1

Exzy = €zyx = €yxz = -1

€ijk = 0 otherwise
> €jjk = —€jik; for any pair of indices.

> In general: €, j, i, = (—1)P where p is the
pairwise permutations.

(1)

number of

ESQC 2019
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Levi-Civita et. al.
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Useful relations

v

v

v

v

v

ESQC 2019
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a-b = ajb; = §j;ajbj; scalar product.

a X b = €jjx&a;by; vector product.

(a x b); = €jjxajby; vector product.
(a > b)z _ szyaxby + Ezyxaybx _ axby . aybx Levi-Civita et. al.
(ax b)-c=(axb)jci = €jjkajbici; scalar triple
product.
2 2
v2¢ = ‘?(,-gx,- = U%ng
€jjk = —€jik; for any pair of indices.
€ijk€kim = 0i10jm — dim0j; contracting k.
€kji€kim = —€jjk€kIm; €tC.
€ijk€ijm = 20km; contracting i, ;.
€jjk€jjk = 6; contracting i, j, k.

33



Differentiation of a vector

Consider a vector in Cartesian coordinates which depends on
a variable u

a(u) = ax(u)é. + ay (1), + a(u)é; 1)

the derivative is then

da . a(u+h)—a(u)
du flwino h (2)
day . da, , da, .
= EGX—FEG)/—FEGZ (3)

ESQC 2019
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Vector calculus
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Exam ple ESQC 2019
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Consider the position of a particle as a function of time and
its time derivatives
r(t) = x(t)é +y(t)é + z(t)é, (4)
dr dx ~ dy ~ dz ~ Vector calculus
() = = = —= 5
dt() PR NPT ()
d?r d?x d?y d’z
—(t) = —5é&+—56é +—é 6
dt2() d2 T gt g (6)

where we have

» Position: r(t)
> Velocity: v(t) = 9 = i(t)
r

» Acceleration: a(t) = & ¥(t)

35



Composite expressions ESQC 2019
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9 ga) = o221 %0 7
) = g &
%(axb) = ax%+%xb (9)
d d
E(a ‘b) = E(axbX +ayb, + a,b;) (10)
= ax%+%bx+... (11)
= a- % + % b (12)



Vector operators ESQC 2019
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» &(x,y,z); scalar field (f.x. electrostatic potential)

» a(x,y,z); vector field (f.x. electric field)

Vector calculus

» V= éx% + éy% + éZ%; vector operator (nabla).

o —gd’
5 . )

v=| £ |. Vo= 13
% ¢ % (13)

37



Grad, div, curl ESQC 2019
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grad¢ = Vo = g_féx + g_f/)éy + g_féz Vector calculus
dva = V-a = %+88_:;/y+%azz
cuda = Vxa = (aaayz - %) & (14)
v (- d)a

+
Q| X
><|<m

|
ol |
SE
N———
N>



Combining grad, div, curl

divgrad V- (V¢)
curl grad 'V x (Vo)
grad div  V(V-a)
divecurl V- (V xa)
curl curl 'V x (V x a)

+ o+

ESQC 2019

POW/2019

Pe | %9 | 9%

o2 T oy T 522

0 Vector calculus

ax da; \ 4

( 8 + 8X y T 8x82)ex
82 ay 82az 02a,

( By? + 8y82 Byax) Yy
8 z ax a,V A

( + 0z0x + 0z0y

0

V(V-a)— V?a

(15)

39



Useful relations

V(o + )
V-(a+b)

V x (a+Db)

V(o)
V- (¢a)
V-(axb)

Vo+ Vy
V-a+V-b
Vxa+Vxhb
YVo + VY
¢oV-a+a Vo

b-(Vxa)—a-(Vxb)

ESQC 2019
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Line integrals ESQC 2019

POW/2019

Consider an integral from point A to point B along the
curve C:

> Jcodr

> [ca-dr

» [caxdr

Vector calculus

Introduce a parametrization

C={r(v);u <u<uw} (17)
dx dy dz
dl’—(dX,dy,dZ)— <E7%7%> (18)
/ a-dr= / aydx + aydy + a,dz = (19)
C C

/u O [ax(u)% + ay(u)% + az(u)%] du (20)

41



Green's theorem in a plane

Consider the functions P(x,y) and Q(x, y) that are
continuous with continuous partial derivatives in a simply
connected region R (no holes). The curve C is the boundary
of this region, then

j{( (x,y)dx+ Q(x, y)dy) = // <@—6—5>dxdy

(21)

ESQC 2019
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Surface/volume integrals

Consider a surface S in three dimensions. We can define the
surface integrals

> [spdS

> Js¢dS

> [sa-dS

» [caxdS
where dS is a vector with the magnitude of the area element
and the direction perpendiculer to the surface,

dS = AdS (22)
Introduce a parametrization
S={r(u,v);uo <u<u;ww<v<wv} (23)

Consider the volume V. We can define the volume integrals

> Jy0dv
» [yadV

ESQC 2019
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Vector calculus

43



Some theorems

The divergence theorem:

/V-adV:j{a-dS
v S

Stokes' theorem:

/S(an)-dS:j{Ca-dr

ESQC 2019

POW/2019

(24) Vector calculus

(25)
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Example — what is VZ%

Vi = (ag+ef+ad)(@+yie A
= —1{x®+y?+22}73/2(2xé + 2y8, +228;)
= -5
(26)
Vi = V. 5§
o) 0 0
= —(Z5+55+243)
2 2 2
= G TR 0
_ 3.3
- r3 r

What about Vz% at r =07

ESQC 2019
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Vector calculus
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Example — what is V2%

What about V2% at r = 07 Use divergence theorem
sphere of radius R.

/V adV = j{a-dS

[V(V-Vi)dv = ¢ vi.ds
= fsppds
- _fs%ds
= ——47TR2
= —47T
so we get

1
/ V22 dV = —4r
Vv r

If this is true then we must have that

v% — a4ms(r)

ESQC 2019
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Vector spaces

Vector space: A set of objects called vectors, (a, b, ¢) with
an addition and a multiplication with scalars, real or
complex, («, () subject to the conditions:

© N o bk w =

a + b = b + a; commutative addition.
(a+b)+c=a+ (b+c); associative addition.
a+ 0 = a; existence of null vector (identity).
a+ (—a) = 0; existence of inverse.

(o + B)a = ca + fa; distributive.

a(a + b) = aa + ab; distributive.

a(fa) = (af)a; compatibility.

1a = a; multiplication with one.

ESQC 2019
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Basis vectors and dimensionallity

> If c1x1 + ox2 + ... + ¢cxn = 0 is fulfilled only if all
¢i = 0, then the vectors are linearly independent.

» N linearly independent vectors span a vector space of
dimension N.

» If there are N linearly independent vectors but not
N + 1, the vector space is said to be N-dimensional.

» There needs to be N linearly independent basis vectors
to span a N-dimensional vector space.

ESQC 2019
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Vector spaces
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» Vectors in two or three dimensions such as forces or
velocities.
» The space of ordered pairs of numbers such that
> (x1,31) + (X2, ¥2) = (xa + X2, 51 + y2) and
> alx,y) = (ax, ay).
» Complex numbers, basically the same as above.

Vector spaces

» The space of all functions f(x) = 3 72 ; ¢k sin(kx) on
the interval [0, 7].

49



Normed vector spaces

We can add a norm to a vector space, ||u|| such that:

» ||ul]| >0, and ||u|]| =0 if and only if u =10
> |l = [of [|u]|

> |Ju+v|| < ||u|| + ||v|| (triangle inequality)

A few norms for R3:

> J|ully = [u1] + [u2| + [us]

> ||ulle = max{|u1], |uz], |us|}

> |lull2 = y/u? + u3 + u3 (Euclidian norm)

> lullp = (lus|P + u2]P + us[P)*/P (¢¢ norm)

ESQC 2019
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Vector spaces
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Inner product

Define an inner product that takes two vectors and form a
scalar such that

> (u|v) = (v|u)*
> (ulav + Bx) = afu|v) + (ulx)
which implies
> o+ Avlx) = a* (ulx) + 5 (v}x)
> {aulfv) = a*lulv).
For example
> (ulv) = u1vi + tpvs + uzvs (for R3)
> (u|v) = ujvi + uhva + uivs (for C3)
» (W1|W3) = [WiW, dV (overlap of wavefunctions)

ESQC 2019
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Vector spaces
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Define a compatible norm as
> |uf| = (ulu)*/?
for example
> ||u|| = Vurur + tous + usuz (for R3)
> [|ul| = /ufur + uSup + ufus (for C3) Vector spaces

> [|W]| = /[ W*W dV (norm of wavefunction)

Define orthogonality as
> (ulv) =0

A set of base vectors that fulfill
> (uiluj) = 0

is called an orthonormal basis.
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Some useful relations

» Schwartz's inequality: |(u|v)| < ||u||||v]| and equality
only if u = av.
» The triangle inequality: ||u + v|| < ||u|| + ||v]|

> Bessels inequality: [|u[|? > >, [(&;|u)|?> where & is a set

of orthonormal basis vectors.
» The parallelogram equality:
[+ v + [Ju = v|[> = 2(][u][> + []v]]?).

ESQC 2019
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Hilbert spaces

Cauchy sequence: A sequence of vectors, {x,-}?il, is called a
Cauchy sequence if for every small ¢ there is a
finite integer N such that ||x, — xp|| < € for
n>Nand m>N.

Complete space: A vector space is complete if any Cauchy
sequence converges to an element in the vector
space.

Hilbert space: A complete inner product space is called a
Hilbert space.

ESQC 2019
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L? space: A vector space with all functions that satisfy
[P dr < o0.

Sobolev spaces: A vector space where the function and the
derivative up to a given order lie in the L?
space.

Vector spaces

55



Some vector spaces Fac a0
POW /2019
R3, all points in 3-dimensional space.
All infinite sequences of real or complex numbers,
{ci}32,, such that >, |ci|* < oo
All functions f such that [ f*f d7 < oo with the inner
product (f|g) = [ f*gdr. Vector spaces

All functions (orbitals) ¢ that can be formed from a
basis set {xi}r_1, ® = Y_; ¢ixi with the inner product
above.

The space of coefficients ¢; above. Note that {x;};_; is
normally a nonorthogonal baS|s so We get the inner

product (c®|c®) =7 ¢/ <X:|X,> =3 c}”S,-jcf)
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Linear operators

A linear operator Ais a mapping that maps an element x in
vector space V to an element z = Ax in vector space V' in
such a way that

A(ax + By) = aAx + BAy (1)

where both Ax and Ay are members in V/. V and V/ can be
the same vector space.

ESQC 2019
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Hermitian adjoint operator
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Consider a linear operator A mapping vectors from one
Hilbert space H; to another Hilbert space Hy. The adjoint
operator Af then maps from H, to H; in such a way that

(ho| Abv), = (AT ho|hi) (2)
Operators

Let H; = H, = H be the Hilbert space of all functions
[ f*f dT < 0o and the inner product (ha|hi) = [ h5hy dT

(ha|Ahy) = (AThy|hy) 3)

At is called the Hermitian adjoint operator.

58
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Consider the operator A= d% for functions on the interval
(—00,00) such that [ F*f dx < oo.
(Flhg) = [ ox *)
Operators
— (e - [(Fyed (5)
= ((-A)flg) (6)

Thus At = —A is the adjoint operator.
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Hermitian operator

Consider the operator A= id% for functions on the interval
(—00,00) such that [ f*f dx < occ.

(Flhg) = [ (i) ox (7)
— ilFe i [(F) e (®)
— [(ryes (9)
— (Arle) (10)

Thus AT = Ais a self-adjoint or Hermitian operator.

ESQC 2019

POW/2019

Operators
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Self adjoint?

Consider the operator A= id% for functions on the interval
[0,1].

(FlAg) = / F(ig’) dx (11)
— il / (F') g dx (12)
— ilrglh+ [ (i) g dx (13)

= (Aflg) +i{f*(1)g(1) - F*(0)g(0)} (14)

Self-adjoint/Hermitian? Depends on boundary conditions.

ESQC 2019
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Operators

61



Some Hermitian operators

With proper boundary conditions
Linear momentum: py, = —ih%.
Angular momentum: [2

Spin: S2

Position: X = x-

Potential energy: V = V(x)-
Hamiltonian: A = ’;"’3 +V

ESQC 2019
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Operators
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An n by m matrix

ESQC 2019

POW/2019

A rectangular array of numbers with n rows and m columns,

dimensions n X m.

a1l
ari
A= asi

anl

a2
a2
as2

an2

ai13
a3
ds33

an3

alm
am
azm

anm

( 1) Matrices
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A square n by n matrix

ESQC 2019

POW/2019

A rectangular array with equal number of rows and columns
is called a square matrix.

a1
an1
A= asi

anl

a2
a2
as2

an2

ai13
a3
ds3

an3

dln
azn
d3n

ann

(2) Matrices
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Basic algebra: addition ESQC 2010

POW/2019

Addition: A=B+ C

b1 b2 b3 Ci1 Ci2 Ci3
b1 by b23 + Co1 C (23 = (3)
b3 b3x b33 31 G C33

a1 =ba+o ax=bon+cn ax=bs+tos
a3y = b3y + 31 azx = by + 32 a3z = b3z + 33

(4)

Matrices

» Associative: (A+B)+ C=A+(B+ ()
» Commutative: A+ B=B+ A
» Matching dimensions: A and B are n x m.
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Basic algebra: multiplication
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Multiplication: A= BC

C12 ...
. .. .. Cro ... = (5)
b1 B3> b33 S 032

(6)

bsiciz + b3acoo + b3zcszo

Matrices

> aj = )y bikckj

» Associative: (AB)C = A(BC)

» NOT commutative: AB # BA, but may be under
certain conditions.

» Matching dimensions: Ais n x m thus Bis n x [ and C
is [ x m.
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Example — matrix multiply ESQC 2019

POW/2019
cosf sinf X1\ cos 0 x1 + sinf xp
—sinf cosd xo )\ —sinfx; + cosfxy

cosf sinf cosg sing \
—sin 9 COS 9 —sin (;S cos (b - Matrices

cos 8 cos ¢ — sinfsin ¢ cos fsin ¢ + sin 6 cos ¢
—sinfcos¢ —cosfsing —sinfsin¢ + cosf cos P

( cos(f + ¢) sin(9+¢)>
—sin(f + ¢) cos(f + ¢)
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Basic algebra: scaling

a;l a2 a3 Aail Aap
Al a ax a3 | = | Aax Aax»
asl ax  ass Aaz1 Aaz

» Distributive: A(A+ B) = A+ AB,
(A4 p)A = NA+ pA.
» Associative: (An)A = A(nA)

ESQC 2019

POW/2019

)\313

)\823 (7)
Aas3

Matrices
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The null and identity matrices ESQC 2019

POW/2019

The null matrix: AO=0A=0and A+0=0+ A= A.
0 0O
0= 0 0 O (8)
0 0O
The identity matrix: Al = IA = A. atrices
1 00
I=E=1=| 0 1 0 (9)
0 01

69



Functions of matrices

Use Taylor expansion as definition for square matrices, for
example

1

A k

e —E k!A (10)
k

ESQC 2019
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Matrices
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Transpose of a matrix

Transpose is the interchange of rows and columns

aii
ani
A= asi

anl

a1l
ar

dlm

(AB)T =BTAT

ai2
a2
asp

an2

ani
a?
a3

a2m

ais
an3
ass

an3

a3l
asz
433

a3m

alm
a2m
a3m

anm

anl
an2
an2

ESQC 2019
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(11)

Matrices

(12)
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Complex and Hermitian conjugate

Complex conjugate
*
a1
*
21
A* = | a3y

*
an1

*
a1
&
ax
*
d32

*
an2

Hermitian conjugate

AT — (AT)* — (A*)T _

(AB)T — BiAT

*
a13

a3

*

d33

an3

Am
Hm
Bm

*
a1
*
a2
*
a13

*
Am

nm

*
a2
*
a2
*
a3

*
Dm

*
31
*
932
*

d33

*
ABm

ESQC 2019
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Matrices
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Example — transpose and Hermitian conjugate

L+ 142 147 240 3+4i

2 22 :<1+2i 242 3+2i>

347 342

147 1420\ . . .

24 242 :(1_’_ 2-1 3".)
1—-2i 2—-2i 3—2i

34+ 3+2i

ESQC 2019
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Matrices
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Determinants
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d11 412 413 -+ din
dp1 a2 a3 - ap
|A| =] @1 d32 as3 - a3 (15)
dnl dp2 4dn3 - dpn
Al = Z Sgn(a)aLm 92,00 - - dn,op (16) .
Matrices
o€eS,

where S, is the set of all permutations of the numbers
{1,2,...,n} and sgn(o) = —1 for an odd number of
pairwise permutations while sgn(o) = +1 for an even
number of pairwise numbers. For n = 2 we have

a1l 4a12

A= 2
21 d22

= ai1a» — a12an (17)




Determinants — recursive definition

a1l
ani
a3l

anl

—d12

di2 a3 din
az azg an
d32 4as3 asn
dn2  an3 dnn

remove row 1 and col 2

a1 a3 an
d31 433 asn
dnl dan3 dnn

= a1

ESQC 2019

POW/2019

remove row 1 and col 1

a2 azs azn
a3z ass azn
dn2  an3 dnn

Matrices

remove row 1 and col 3

+813

dp1 a2 dazn
a31  da32 a3n
dnl dan2 dnn

(18)
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Determinant 3 x 3
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411 412 ai3
o a2 azs a1 as
dp1 a2 a3 | = 411 — a12
d32 4as3 a31 433
a31 432 4a33
a a -
+a13 21 22 — (19) Matrices
as31  4as2

a11a22333 — a11d23332 — d12a21333+

a12a73a31 + a13a21a32 — 313322331 (20)
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Determinants — some properties

> |A] is the product of the eigenvalues

> AT] = |AL A = |A], AT = |(A")T] = |A*] = |A]*

> Interchange of two rows or columns will change the sign.

> (M| = \7/A|

» Linear dependence in rows or columns —  |A| = 0.

» Identical rows or columns — |A| =0.

» Add one row to another row does not change the value
of the determinant.

~ |AB| = |4 |8

ESQC 2019

POW/2019

Matrices
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EXa m ple ESQC 2019

POW/2019

» The determinant is the product of the eigenvalues.

» The trace of a matrix (the sum of the diagonal
elements) is the sum of the eigenvalues.

11 11
=0; ’cr(1 1)-2

11
M+XA=2; A XA =0; )\172:0,2

Matrices

#1(1) #2(1) ¢3(1) -+ éa(1)

) #1(2) #2(2) #3(2) -+ éa(2)

Wy = Nz <151:(3) <152:(3) <153:(3) <15n:(3)
o1(n) ¢2(n) ¢3(n) -+ ¢n(n)
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Inverse ESQC 2019
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A square matrix may have an inverse such that

ATTA= AAT = | (21)
Using the properties of a determinant

1= i = A7 Al = |A] |47 (22) "

so |A| # 0 is a necessary and also sufficient condition for an
inverse to exist. If |[A| = 0 the matrix is called singular.
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Ra n k ESQC 2019
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The rank of a n X m matrix is given by the number of
linearly independent vectors v; in A. It is also given by the
number of linearly independent vectors wy in A.

T 1 T

A= vi v ... vnq (23)
\l/ \l/ \l/ Matrices
— wy —

A— — W — (24)
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Example — a rank m < n matrix

POW /2019
A rank 1 matrix.
o] G ac e
ci’'= o |(a o g)=| ca aa g
a3 G3C1 C3Cx (C3C3
A HF density matrix for m occupied orbitals has rank m Vs

m
D= Z nei ¢
i=1
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Special matrices

Diagonal:
an
0
0
0
Tridiagonal
ai
an

0
0

OOI&BO
N

a2
a2

as2
0

a3
ass
d43

o O O

a4

as4
a4

ESQC 2019
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Matrices
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Special matrices

Lower/upper triangular

a2

a2
0
0

ai13
a3

as3
0

ESQC 2019
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aia
ana
ds4
44

Matrices

(27)
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Special matrices
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v

Symmetric and antisymmetric: ST = S and AT = —A.
Any matrix X = S + A.

» Hermitian and antihermitian: HT = H and AT = —A.
Any matrix X = H 4+ A.

Orthogonal: O~1 =0T
Unitary: U~ = UT.

Matrices

v

v



Change of basis — similarity transform
Consider a new basis
ej- = Z S,-J-e,-

How does the representation of vector u change?

u=> xei=> xej=>_ (3 Spx)e;
i J i J
Xj = ZS,JXJ' x=5x; X' =85"1x
Jj
Consider a matrix vector multiplication in original
coordinates y = Ax and in transformed coordinates
y' = A'X.
y=Ax; Sy'=ASK; y' =STASK
thus
A =ST1AS

ESQC 2019

POW/2019

Matrices
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Gram-Schmidt orthonormalization zac e

POW/2019

Start with a set of vectors, x1,X2,...,X,
1. Normalize: xj = x1/||x1]|.
Orthogonalize: x5 = xo — (x2|x})x]
Normalize: x) = x5 /|[x5]|.
Orthogonalize: x5 = x3 — (x3|x])x] — (x3]x5)x5
Normalize: x§ = x5/||x5]|.
Orthogonalize: xj = x4 — ...
Etc.

Matrices

N oo AW
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Example — Gram-Schmidt
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x1=(1,1,1)ixo = (2,0,1);x3 = (3,1,—1)
1 X, = %(1 1,1)
2. %, =(2,0,1) —(2-1+0-1+1-1)(1,1,1)
—(1.-1,0)
3. X,2 = %(1 -1 0) Matrices
4 =(31,-1) - 53 1+ 11+ (-1) - 1)(1, 1,1)

—%(3 14+1-(=1)+(-1)-0)(1,-1,0)
=(1,1,-2)



Distributions ESQC 2019
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Test function: A function ¢(x), that is wellbehaved and
fulfills

» ¢(x) is smooth (infinitely differentiable)
» ¢(x) has compact support (identically zero outside a
finite intervall)
Let us define a distribution f(x) by the values of the
functional

Distributions

for all possible test functions ¢(x).
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Example — the Dirac ¢ function
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The Dirac § function can be defined as
6.0 = | )6 dx = 6(0) 2)

for any test function ¢(x). We can shift the origin of the
test function

6(a) = /_ Z S()6(x +a) dx = /_ Z 5(z—a)é(z) dz (3)

If we let ¢¢(x) =1 on the interval [—t, t] we get

/_Z 5(x) dx = lim /: 5(x)oe(x) dx = 1 ()

t—o00

» Only defined under an integral sign.

89



Example — the Heaviside step function

Let us define the Heaviside step function as

x <0
x=0
x>0

H(x) =

= N— O

or in the form of a distribution

.0 = | Z HEx)o() = [ " 6(x) dix

ESQC 2019

POW/2019

Distributions

(6)
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The derivative of a distribution

(0 = [ e o

[F(x)0 ()] — /_ ™ F08 () dx

_ /_ Z FO)¢ (x) dx
= _<f7¢/>

ESQC 2019
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Distributions
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Connection between H(x) and d(x).

POW/2019

Let us take the derivative of H(x),

.0 = [ H o) o (11)
- /Oo H(x)¢/(x) dx (12)
- / & (x (13)
_ (14) Distributions
= —{¢(00) #(0)} (15)
= ¢(0) (16)

thus H'(x) = 4(x).



ESQC 2019

Connection between §(x) and ...

POW/2019

Fourier back transform with equal amplitudes for all
frequencies

5(x) = /Oo Flw)e™ duw;  Flw) =1 (17)

:% .

Electrostatics for a point charge

Distributions

v2% — _4rs(r) = —4m3(x)3(y)5(2) (18)
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LU decomposition
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For a square matrix A we want to rewrite it as
A=LU (1)

where L is a lower triangular matrix and U is an upper
triangular matrix.

all are a3 1 0 O U1l U2 U3
a1 a» a3 | =| b1 1 O 0 wxn w3
asl a3y ass ki1 ha 1 0 0 wws3
(2) Decompositions
u11 u12 u13
= | hbiuir  hiup + ux hiu1z + uo3

Biuir  Biuip + Bauy  KBiuiz + Rouoz + U3z

(3)
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LU decomposition

Now it is simpler to solve a linear equation system

Ax=c, LUx=c Lb=c;

Ux=0»b
1 0 O by a
/21 1 0 b2 = ()]
ki h2 1 bs a3
uil U2 u13 X1 by
0 wn w3 x | =1 b

ESQC 2019

POW/2019

(4)

Decompositions
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ESQC 2019

LL decomposition, Cholesky decomposition

POW/2019

Assume that A is symmetric and positive semi-definite
matrix, then

A=LLT (5)
Can be used for data reduction:
1. A= /(1)(/(1))T;A = A1 + Ry. Is Ry small? Then stop.

2. Ay = AL+ 1@ A= Ay + Ry. Is R, small? Then
stop.

Decompositions
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Cholesky decomposition

LLT =

h1
b1
k1

halfy
balfy
1y

hlf;
b}y
bl

h1lf;
b}y
bl

0 O
by 0
hky k3

1
0
0
Wl kol
12 11 13
bl /21/13

il il
hlﬁ2

by Iy + bl
Iy Iy + Il

hill,
by Iy + bl
Iy Iy + Il

i
/22 /23
i

33

halfs

b1 lfs + holls
l1lfs + lalls

hill
bilfs + holls
h1lis + holly + hsll

(8)

(9)

ESQC 2019
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Decompositions
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Singular value decomposition ESQC 2019

POW/2019

Let A be a matrix of dimension m X n. Assume that we can
do the rewrite

A= USVT (10)

where
» U has dimension m X m and is unitary
» S has dimension m x n and is diagonal, that is s;; = 0
unless | = j.
» V has dimension n x n and is unitary

Decompositions

Now form the two Hermitian matrices
AtA = vstutusvt = vstsyt (11)
AAT = uUsvivstut = usstut

where STS and SST are diagonal matrices of dimensions
n X n and m X m respectively.
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Singular value decomposition

Rewrite

AtA = VSTsyft
AAT = Usstut

into

VIAtAV = Sfs
UTAATU = sst

ESQC 2019

POW/2019

(12)

(13)

which is a diagonalization of AAT and ATA. The smaller of

SSt and STS have eigenvalues \;. Thus S is diagonal with

s2 = \;. We can now write A as

A= sy

If we discard vectors for small eigenvalues we get a data

reduction.

Decompositions

(14)
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Exa m p|e —_ SVD ESQC 2019
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Start with matrix A

0 -1
A: 1 1 (15)
-1 0
and form
0 -1
01 -1 2 1
ATA:( > 1 1 :( >
-11 0 (1 0) 1 2
(16)
Decompositions
and
0 -1 1 -1 0
AAF = 1 1 (_(1’ X _é>: 12 1
-1 0 0 -1 1

(17)
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Exa m p|e —_ SVD ESQC 2019
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Diagonalize ATA

(D)) (1) (1) oo
(3 )() e ()-e( 1)

(3 3)
V2

and 511 == \/g and 522 =1

Decompositions

SO

S-Sl
=Sl

101



Example — SVD

Diagonalize AAT

1 -1
-1 2
0 -1
1 -1
-1 2
0 -1
1 -1
-1 2
0 -1

ESQC 2019

POW/2019

Decompositions



Example — SVD

Finally
A= USVT
where
_ 1
NG
u=| =
e
V6

o = O

Sk ~—
N—————

§|"‘ o§|"‘
SIESIFSI-

(24)

(25)

(26)

(27)

ESQC 2019
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Decompositions
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Diagonalization of Hermitian matrix

Any Hermitian matrix, H, can be diagonalized by some
unitary matrix, U

U'HU = D; Dj = 6\

For the real symmetric case it can be diagonalized by an
orthogonal matrix.

O"HO = D; Dj =\

where \; are so called eigenvalues of H.

(1)

()

ESQC 2019
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Diagonalizing
matrices
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Eigenvectors

Multiply both sides by U,

U'HU=D — HU=UD (3)

For each column in U, u(k), we have

Hut) = 4\, (4)

where u(
k.

k)

is an eigenvector with corresponding eigenvalue

ESQC 2019

POW/2019

Diagonalizing
matrices
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How to diagonalize

We need to find U or O.
» We need all (most) eigenvalues and eigenvectors
» Jacobi, Givens, Householder, QR, MRRR, ...
> We need a few eigenvalues and eigenvectors
» Lanzcos, Davidson, ...

ESQC 2019

POW/2019

Diagonalizing
matrices
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Power method

Consider a trial vector x that is assumed to be an
approximation to one eigenvector. Expand this in the
(unknown) eigenvectors

x=cu + u® 4.+ cu
Multiply this vector by H m times to get
X =AU + AU+ A

which will eventually be dominated one eigenvalue. This
method is mostly of theoretical interest.

(5)

(6)

ESQC 2019
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Diagonalizing
matrices
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Jacobi's method

Loop through all offdiagonal element, H;;, and perform a

2 x 2 rotation such that Hjj = H;; = 0. For example i = 2
and j = 3.
/ /
X al, als X X

/ / _ / /
a1 a2 ay =0 ay ay
/ / / /
a3 azp =0 a33 d34 d3p
/ /
X 842 843 X X
X as, ags X X

The square sum of the offdiagonal elements is reduced by
2H§. Very robust method, a bit slow, suitable for smallish
matrices.

ESQC 2019

POW/2019

Diagonalizing
matrices
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Givens rotations

Here we reduce the matrix to a tridiagonal form: perform
2 x 2 rotations with (i,j) = (2, 3) in order to make a;3 = 0.

X ap, a;3=0 x x
an  ap ayp  dy axp
an =0 ayp a3 a3y s (8)
X ayy  ans X X
X ag,  agy X X

followed by rotating (2,4) to make a;4 = 0, etc. Followed by
some method to find eigenvalues and eigenvectors, such as

MRRR.

ESQC 2019
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Diagonalizing
matrices
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Inverse iteration

Consider a normalized trial vector x that is assumed to be an
approximation to one eigenvector. Expand this in the
(unknown) eigenvectors

x = cu® 4+ u® + ..+ c,u™ 9)

Find an approximate eigenvalue by X\ = x!Hx. Solve the
equation

(H=M)X =x; xX'=(H-X)"x (10)

X = a2 "1 r oA 1 ey (A—A)Lul@

(11)

and the procedure is repeated until convergence. The
procedure has cubic convergence.

ESQC 2019

POW/2019

gonalizing
trices
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Krylov subspace methods

A Krylov subspace is defined as

Kn(A, b) = span {b, Ab, A%b, ..., A" b} where b is a real
vector and A is a real matrix.

Used to solve Ax =y. Assume b =~ x, make the ansatz

n—1
x~ Y cmA™b = P(A)b (12)
m=0
Minimize the residual
IelPP =1ly = D cmA™b|? (13)
= |lyll> =2 cm(ylA™b) + > cmck(A™b|A*b) (14)
m mk
dil’ 3 (ATb|Akb)c, = (y|ATb) (15)
dcm p

Orthonormalizing the vectors in K, (A, b) gives, in general,
better numerical stability.

ESQC 2019
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Diagonalizing
matrices
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Lanczos' method

Transform Hermitian n x n matrix A to tridiagonal m x m
matrix T.
1. Start with a vector ||x1]| =1
2. Initialize
2.1 S1 = AX1
22 a1 =slx
2.3 W1 = S1 — 1X31
3. Fori=2,....,m
3.1 ﬁ,’ = ||W,'_1||
3.2 If ﬁ,’ 75 0 Then X = W;_l/ﬁ,'
Else panic/stop/pick random orthogonal vector
3.3 S; = AX,'
3.4 ajp = S}LX,'
3.5 wj =s; — ajX; — BiXj—1

We do not need A explicitly!

ESQC 2019
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Diagonalizing
matrices
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Lanczos' method
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We get the unitary matrix V and the tridiagonal matrix T
such that T = VAV,

T o1 T
V= X1 X2 ... Xp (16)
1 1
a1 /82 0 e
Ba aa B3 ...
T = 02 ﬁj Oéi ce (17) Diagonalizing
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Davidson type methods

Davidson matrix diagonalization for one root.

1. Guess a start vector such that ||ci|| =1
2. Fori=1,...
2.1 Orthonormalize ¢; against ¢j, j =1,...,

2.2
2.3
2.4
2.5
2.6

2.7

Compute s; = Hc; (o vector)

Form H; = (silcj) (only last row)
Diagonalize A, Avk) = N,
Select root: v( and )\,,(

Form residual r; = va (sj — Am€))
Cit1 = (H(O) — )\)71I‘,'

i—1

ESQC 2019
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Diagonalizing
matrices
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Improvements to Davidson's method

» Use several roots simultaneously. Davidson-Liu method.

» Use a better preconditioner, do full diagonalization of a
submatrix of H.

» Skip normalization.

» Replace preconditioner (H(®) — X\)~r with
c(HO — )" + o(HO® —))~1c

» Inverse iteration

ESQC 2019

POW/2019

Diagonalizing
matrices
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