POW/2019

Numbers

Derivative:

Calculus of ⁄ariation

Vectors

Levi-Civita et. al

vector carcuit

vector spaces

perators

**Natrices** 

istributions

ompositions

Diagonalizing

# Mathematics

A refresher

Per-Olof Widmark

Theoretical Chemistry Chemistry Department Lund University

**ESQC 2019** 

## Outline

## ESQC 2019

POW/2019

Numbers

Derivatives

Calculus of variation

Vectors

Levi-Civita et. al.

Vector calculus

Vector spaces

Operators

Matrices

Distributions

Decompositions

Diagonalizing matrices

umbers

erivatives

alculus of

ctors

tor calculus

octor spac

trices

tributions

ompositions

atrices

- Natural numbers,  $\mathbb{N}$ : all whole non negative numbers, 0. 1. 2. 3. 4. . . . .
- ▶ Integers,  $\mathbb{Z}$ : all whole numbers ..., -3, -2, -1, 0, 1, 2, 3, ....
- ▶ Rational numbers,  $\mathbb{Q}$ : all numbers that can be written as  $\frac{p}{q}$  where p and q are integers,  $q \neq 0$ .
- ▶ Irrational number,  $\mathbb{P}$ : A number that is the limit of a sequence of rational numbers but is not rational. For example, Leibniz formula gives  $\pi$  which is an irrational number

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots \tag{1}$$

- ightharpoonup Real numbers,  $\mathbb{R}$ : all rational and irrational numbers.
- ► Complex numbers,  $\mathbb{C}$ : all numbers of the form x+iy where x and y are real and i is the imaginary unit defined as  $i^2=-1$ .

Derivatives

Calculus of

ectors

Levi-Civita

ector carculus

noratore

atrices

SUIDULIONS

compositions

iagonalizing atrices

## Complex numbers

**ESQC 2019** 

POW/2019



Derivative:

Calculus of variation

Vector

evi-Civita et. a

ector calculu/

vector space

perators

Matrices

istributions

composition

Diagonalizing



In the formulas below we assume that z = x + iy,  $z_1 = x_1 + iy_1$  and  $z_2 = x_2 + iy_2$ .

- From a set theory point of view:  $\mathbb{C} = \mathbb{R}^2$ , an ordered pair of real numbers (x, y).
- Addition:  $z = z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$
- ► Subtraction:  $z = z_1 z_2 = (x_1 x_2) + i(y_1 y_2)$
- Multiplication:  $z = z_1 \cdot z_2 = (x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1)$
- ▶ Complex conjugate:  $z^* = x iy$
- $(z_1z_2)^* = z_1^*z_2^*$
- Norm:  $|z| = \sqrt{zz^*} = \sqrt{x^2 + y^2}$
- ▶ Division:  $z = \frac{z_1}{z_2} = \frac{z_1 z_2^*}{z_2 z_2^*} = \frac{z_1 z_2^*}{|z_2|^2}$

### Numbers

Derivatives

Calculus of variation

/ectors

.evi-Civita et. al

ector calculus

lakulaaa.

ictributions

ecompositions

Diagonalizing matrices

Any point in  $\mathbb{R}^2$  can be represented in polar coordinates

$$\begin{cases} x = r\cos(\theta) \\ y = r\sin(\theta) \end{cases}$$
 (2)

and this also holds true for  $\mathbb{C}$ . Combine this with Eulers formula

$$e^{i\theta} = \cos(\theta) + i\sin(\theta) \tag{3}$$

we obtain

$$z = x + iy = re^{i\theta} = r\cos(\theta) + ir\sin(\theta). \tag{4}$$

Using the polar representation makes certain operation simpler. In the formulas below we assume that  $z = x + iy = re^{i\theta}$ ,  $z_1 = x_1 + iy_1 = r_1e^{i\theta_1}$  and  $z_2 = x_2 + i v_2 = r_2 e^{i\theta_2}$ .

- Multiplication:  $z = z_1 \cdot z_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)}$
- Division:  $z = \frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\theta_1 \theta_2)}$
- Square root:  $\sqrt{z} = \sqrt{re^{i\theta}} = \sqrt{r}e^{i\theta/2}$
- Finding roots:  $z^3 = 1$  has roots 1,  $e^{2\pi i/3}$  and  $e^{4\pi i/3} = e^{-2\pi i/3}$  by realizing that  $1 = e^0 = e^{2\pi i} = e^{4\pi i} = e^{6\pi i}$

Derivative

Calculus of /ariation

Vectors

\_evi-Civita et. a

Antricas

):\_\_\_\_!:\_:\_



Vector space

Operators

/latrices

istributions

compositions

Diagonalizing matrices









▶ Ordinary derivative of a function f(x) of one variable x:

$$\frac{df}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = f'(x) \tag{1}$$

Partial derivative of a function f(x, y) of two variables x and y with respect to x:

$$\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h} = f'_x \tag{2}$$

▶ Total derivative of a function f(x, y) of two variables x and y with respect to x:

$$\frac{\delta f}{\delta x} = \lim_{h \to 0} \frac{f(x+h, y(x+h)) - f(x, y(x))}{h}$$

$$= \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{dy}{dx}$$
(4)

-----

Derivatives

Calculus of ariation

ectors

Levi-Civita e

ector calculus

cetor spaces

atrices

Dietributions

ecompositions

Diagonalizing natrices

### Ivambers

Derivatives

alculus of

ectors

evi-Civita et. al.

ector calculus

ctor spaces

Matrices

Distributions

ompositions

Diagonalizing

$$\frac{\delta f}{\delta x} = \lim_{h \to 0} \frac{f(x+h, y(x+h)) - f(x, y(x))}{h} \tag{6}$$

$$= \lim_{h \to 0} \frac{\overbrace{f(x+h,y(x))}^{\text{add}} - f(x,y(x))}{h}$$
 (7)

+  $\lim_{h\to 0} \frac{f(x+h,y(x+h)) - \overbrace{f(x+h,y(x))}^{\text{subtract}}}{h}$  (8)

$$= \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{dy}{dx} \tag{9}$$

$$= \frac{df}{dx} \tag{10}$$

$$f(z) = u(x, y) + iv(x, y)$$
(11)

where x, y, u and v are real. When is the derivative well defined using  $\Delta z = \Delta x + i \Delta y$ ?

$$\frac{df}{dz} = f'(z) = \lim_{\Delta x \to 0} \frac{\Delta u + i\Delta v}{\Delta x}$$
 (12)

$$= \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} \tag{13}$$

$$= \lim_{\Delta y \to 0} \frac{\Delta u + i \Delta v}{i \Delta y} \tag{14}$$

$$= \frac{1}{i} \frac{\partial u}{\partial v} + \frac{\partial v}{\partial v} \tag{15}$$

Derivatives

Calculus of variation

ctors

Levi-Civita et. al.

ctor carculus

nerators

latrices

stributions

ecompositions

Diagonalizing matrices



Jumbers

Derivatives

Calculus of ariation

ectors

\_evi-Civita et. a

.

perators

latrices

ctributions

compositions

Diagonalizing

Caucity Memaini Condition

The condition from above

$$\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{1}{i} \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}$$
(16)

leads to the Cauchy-Riemann condition

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}; \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \tag{17}$$

This condition (and all four partial derivatives exist and are continious) leads to a function that have a well defined derivative f'(z), and such a function is called an *analytic function*.

Consider the function

$$f(z) = e^{z} = e^{x+iy} = e^{x}e^{iy} = e^{x}\cos(y) + ie^{x}\sin(y) = u(x,y) + iv(x,y).$$
 (18)

Evaluate the partial derivatives

$$\frac{\partial u}{\partial x} = e^{x} \cos(y) = u 
\frac{\partial v}{\partial x} = e^{x} \sin(y) = v 
\frac{\partial u}{\partial y} = -e^{x} \sin(y) = -v 
\frac{\partial v}{\partial y} = e^{x} \cos(y) = u$$
(19)

All conditions are met thus  $e^z$  is an analytic function and

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = u + iv = e^{z}.$$
 (20)

lumbers

Derivatives

alculus of ariation

ectors

vi-Civita et. al

ector calculus

сстог зрасс.

\_\_\_\_

/latrices

istributions

compositions

iagonalizing iatrices

$$e^z = 1 + z + \frac{1}{2!}z^2 + \frac{1}{3!}z^3 + \frac{1}{4!}z^4 + \dots = \sum_{k=0}^{\infty} \frac{1}{k!}z^k$$
 (21)

is convergent for all  $z \neq \infty$ . We can define

$$e^{X} = \sum_{k=0}^{\infty} \frac{1}{k!} X^{k} \tag{22}$$

for basically any X! For example

$$U = e^X$$
; X is anti-Hermitian matrix, U is unitary (23)

e<sup>T</sup>; Exponential ansatz in Coupled Cluster theory

Numbers

Derivatives

ariation

ectors

\_evi-Civita et. al.

vector calculu

ector spaces

0101010

viatrices

istributions

compositions

.....

nagonalizing natrices

### Derivatives

Calculus of variation

Vectors

Levi-Civit

vector calcult

perators

**Matrices** 

Distributions

compositions

Diagonalizing

# A function takes a number as input and returns a number: y = f(x).

- A functional takes a function as input and returns a number
  - $E[\Psi] = \int \Psi^* \hat{H} \Psi d\tau$
  - $F[\rho] = \int \rho^2(\mathbf{r}) |\nabla \rho(\mathbf{r})|^2 d\tau$ , (GGA LYP)

ectors

Levi-Civita et. a

vector carculus

.

Matrices

Distributions

ecompositions

Diagonalizinį matrices

Consider a functional  $F[\rho] = \int G(x, \rho, \rho', ...) dx$  and let us define the functional derivative

$$\frac{\delta F}{\delta a}$$
 (25)

by

$$\int \frac{\delta F}{\delta \rho} \phi dx = \lim_{\epsilon \to 0} \frac{F[\rho + \epsilon \phi] - F[\rho]}{\epsilon}$$
 (26)

$$= \left[\frac{d}{d\epsilon}F[\rho + \epsilon\phi]\right]_{\epsilon=0} \tag{27}$$

where the functions  $\rho(x)$  and  $\phi(x)$  are chosen to fulfill the boundary conditions of the problem.

Let us try to minimize the functional

$$F[\rho] = \int_0^1 (\rho')^2 dx; \quad \rho(0) = 0; \rho(1) = 1.$$
 (28)

We then have that  $\phi(0) = \phi(1) = 0$  in order to maintain the boundary conditions for  $\rho + \epsilon \phi$ . Now use the defintion

$$\int \frac{\delta F}{\delta \rho} \phi dx = \lim_{\epsilon \to 0} \frac{\int_0^1 (\rho' + \epsilon \phi')^2 dx - \int_0^1 (\rho')^2 dx}{\epsilon}$$
(29)
$$= \lim_{\epsilon \to 0} \frac{\int_0^1 \epsilon (2\rho'\phi') dx + \int_0^1 \epsilon^2 (\phi')^2 dx}{\epsilon}$$
(30)
$$= \int_0^1 2\rho'\phi' dx$$
(31)

$$= [2\rho'\phi]_0^1 - \int_0^1 2\rho''\phi dx$$
 (32)

$$\frac{\delta F}{\delta \rho} = -2\rho''(=0) \tag{33}$$

Numbers

Derivatives

alculus of

ectors

evi-Civita et.

ctor calculus

ector spaces

//atrices

istributions

ecompositions

iagonalizing atrices

Calculus of variation

Calculus of variation

Consider the problem: minimize the functional F with respect to the function  $\rho$  subject to the conditions  $\rho(a) = \rho_a$ and  $\rho(b) = \rho_b$ .

$$F[\rho] = \int_{a}^{b} G(x, \rho, \rho') dx \tag{1}$$

Make F stationary with respect to variations of  $\rho$ :

$$\delta F[\rho] = F[\rho + \phi] - F[\rho] \tag{2}$$

where  $\phi$  is "small".

Replace  $\rho(x)$  with  $\rho(x) + \phi(x)$  with  $\phi(a) = \phi(b) = 0$  to satisfy the boundary conditions.

$$\delta F = F[\rho + \phi] - F[\rho]$$

$$= \int_{a}^{b} G(x, \rho + \phi, \rho' + \phi') dx - \int_{a}^{b} G(x, \rho, \rho') (Ax)$$

$$= \int_{a}^{b} \left( \frac{\partial G}{\partial \rho} \phi + \frac{\partial G}{\partial \rho'} \phi' \right) dx + \mathcal{O}(\phi^{2})$$

$$= \int_{a}^{b} \frac{\partial G}{\partial \rho} \phi dx + \left[ \frac{\partial G}{\partial \rho'} \phi \right]_{a}^{b} - \int_{a}^{b} \left( \frac{d}{dx} \frac{\partial G}{\partial \rho'} \right) \phi dx$$

$$= \int_{a}^{b} \left( \frac{\partial G}{\partial \rho} - \frac{d}{dx} \frac{\partial G}{\partial \rho'} \right) \phi dx = 0; \quad \forall \phi$$
(7)
functional derivative

Vumbers

Derivatives

Calculus of variation

ectors

evi-Civita et. al.

perators

/latrices

stributions

...

o iagonalizin

Vumbers

Derivatives

Calculus of variation

Vectors

Levi-Civita et. al.

Antricoc

/latrices

stributions

compositions

iagonalizing atrices

Minimizing the functional  $F[\rho]$  leads to the Euler-Lagrange equation

$$\frac{\delta F}{\delta \rho} = \frac{\partial G}{\partial \rho} - \frac{d}{dx} \frac{\partial G}{\partial \rho'} = 0$$

(8)

$$ds = \sqrt{dx^2 + dy^2} = \sqrt{1 + (y')^2} dx \tag{9}$$

so the functional we want to minimize is

$$S[y] = \int_0^1 \sqrt{1 + (y')^2} \, dx; \quad G(x, y') = \sqrt{1 + (y')^2}$$

(10)

ds dy

Numbers

erivative

Calculus of variation

ectors

\_evi-Civita et. al.

Ctor Carculus

Matrices

Distributions

ecompositions

Diagonalizing matrices



Calculus of variation

ectors

LCVI CIVILLI CL. LI

Operators

Matrices

Distributions

\_\_\_\_\_

Diagonalizing

$$\frac{\partial G}{\partial y} - \frac{d}{dx} \frac{\partial G}{\partial y'} = 0 \quad \to \quad \frac{\partial G}{\partial y'} = c \tag{11}$$

$$\frac{\partial G}{\partial y'} = \frac{1}{2} \left\{ 1 + (y')^2 \right\}^{-1/2} (2y') = \frac{y'}{\sqrt{1 + (y')^2}} = c \quad (12)$$

massage this a bit and we get

$$y' = \frac{c}{\sqrt{1 - c^2}} = k; \quad \rightarrow \quad y = kx + l; \quad \rightarrow \quad y = x$$
 (13)

## Several dependent variables:

$$F = \int G(x, \rho_1, \rho'_1, \rho_2, \rho'_2, \dots)$$
 (14)

leads to a set of simultaneous equations

$$\frac{\partial G}{\partial \rho_i} - \frac{d}{dx} \frac{\partial G}{\partial \rho_i'} = 0 \tag{15}$$

## Several independent variables:

$$F = \int G(x_1, x_2, \dots, \rho, \frac{\partial \rho}{\partial x_1}, \frac{\partial \rho}{\partial x_2}, \dots)$$
 (16)

yields the equation

$$\frac{\partial G}{\partial \rho} - \sum_{i} \frac{\partial}{\partial x_{i}} \frac{\partial G}{\partial \rho'_{i}} = \frac{\partial G}{\partial \rho} - \nabla \cdot \frac{\partial G}{\partial \nabla \rho} = 0; \quad \rho'_{i} = \frac{\partial \rho}{\partial x_{i}}$$
 (17)

lumbers

Derivatives

Calculus of variation

ectors

avi Civita et a

ctor calculus

ctor space

atrices

etributions

compositions

t................

atrices

## **Higher orders:**

$$F = \int G(x, \rho, \rho', \rho'', \ldots)$$
 (18)

yields

$$\frac{\partial G}{\partial \rho} - \frac{d}{dx} \frac{\partial G}{\partial \rho'} + \frac{d^2}{dx^2} \frac{\partial G}{\partial \rho''} - \dots = 0$$
 (19)

## **Unrestricted upper point:**

$$\int_{a}^{b} \left( \frac{\partial G}{\partial \rho} - \frac{d}{dx} \frac{\partial G}{\partial \rho'} \right) \phi \, dx + \left[ \frac{\partial G}{\partial \rho'} \phi \right]_{a}^{b} = 0 \tag{20}$$

$$\frac{\partial G}{\partial \rho} - \frac{d}{dx} \frac{\partial G}{\partial \rho'} = 0 \text{ and } \left. \frac{\partial G}{\partial \rho'} \right|_{x=b} = 0$$
 (21)

lumbers

Derivatives

Calculus of variation

ctors

evi-Civita et. al.

ctor calculu

ector spaces

Intriese

iatrices

.IIDutions

ompositions

iagonalizing iatrices





Derivatives

alculus of ariation

Vectors

Levi-Civita et. al

Vector calculu

Vector space

Operators

**Matrices** 

istributions

compositions

Diagonalizing matrices

▶ Coordinate system, basis vectors:  $\hat{e}_x$ ,  $\hat{e}_y$  and  $\hat{e}_z$ .

▶ *n*-tuples:  $\mathbf{r} = (r_x, r_y, r_z)$  vs.  $\mathbf{r} = r_x \hat{e}_x + r_y \hat{e}_y + r_z \hat{e}_z$ 

• Row vector:  $\mathbf{r} = (r_x, r_y, r_z)$ 

- ► Column vector:  $\mathbf{r} = (r_x, r_y, r_z)^T = \begin{pmatrix} r_x \\ r_y \\ r_z \end{pmatrix}$
- ▶ Generalisation to *n* dimensions:  $\mathbf{r} = (r_1, r_2, \dots r_n)^T$
- ► Scalar product  $\langle \mathbf{a} | \mathbf{b} \rangle = \mathbf{a}^\mathsf{T} \mathbf{b} = \sum_{i=1}^n a_i b_i$
- Norm:  $||\mathbf{r}|| = \sqrt{\langle \mathbf{r} | \mathbf{r} \rangle}$  (Pythagorean theorem)
- ▶ Vector product, cross product:  $\hat{e}_x \times \hat{e}_y = \hat{e}_z$  (Right handed coordinate system, only in 3D)

Numbers

Derivatives

Calculus o variation

Vectors

Levi-Civita et.

ctor calculus

vector spar

.

/latrices

istributions

compositions

Diagonalizing matrices

## Coordinates, basis vectors

**ESQC 2019** 

POW/2019

Numbers

Derivative

Calculus of variation

Vectors

Levi-Civita et. a

Vector calculus

Vector spac

Operators

Matrices

istributions

compositions

Diagonalizing

Right handed coordinate system

▶ Basis vectors:  $\hat{e}_x$ ,  $\hat{e}_y$  and  $\hat{e}_z$ .



Derivative

Calculus o

Vectors

Levi-Civita et. al

ector calculus

vector spac

Antologo

Distributions

)iagonalizing

# Scalar product

- $a \cdot b \stackrel{\text{def}}{=} a_x b_x + a_y b_y + a_z b_z = b \cdot a$
- $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$
- ▶  $||\mathbf{a}||^2 = \mathbf{a} \cdot \mathbf{a} = a_x a_x + a_y a_y + a_z a_z$ ; Norm, Pythagorean theorem.



## Vector product

ESQC 2019

POW/2019

Numbers

Derivative

Calculus o variation

Vectors

Levi-Civita et. al

ector calculu

Matrices

Distributions

ecompositions

Diagonalizinį matrices

 $\mathbf{a} \times \mathbf{b} \stackrel{\text{def}}{=} (a_y b_z - a_z b_y, a_z b_x - a_x b_z, a_x b_y - a_y b_x)^{\mathsf{T}}$ 

- ightharpoonup  $\mathbf{a} imes \mathbf{b} \perp \mathbf{a}$  and  $\mathbf{a} imes \mathbf{b} \perp \mathbf{b}$
- $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|\sin\theta$
- $\qquad \qquad \hat{e}_x \times \hat{e}_y = \hat{e}_z; \quad \hat{e}_y \times \hat{e}_z = \hat{e}_x; \quad \hat{e}_z \times \hat{e}_x = \hat{e}_y$





- $\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$ ; commutative addition
- (a + b) + c = a + (b + c); associative addition
- ▶  $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$ ; commutative scalar product
- ▶  $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$ ; anticommutative vector product
- ▶  $(\mathbf{a} + \mathbf{b}) \cdot \mathbf{c} = \mathbf{a} \cdot \mathbf{c} + \mathbf{b} \cdot \mathbf{c}$ ; distributive scalar product
- ▶  $(\mathbf{a} + \mathbf{b}) \times \mathbf{c} = \mathbf{a} \times \mathbf{c} + \mathbf{b} \times \mathbf{c}$ ; distributive vector product
- ▶  $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}) = [\mathbf{a}, \mathbf{b}, \mathbf{c}]$ ; scalar triple product, CAB rule.
- ▶  $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) \neq (\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$ ; not associative
- ▶  $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$ ; vector triple product.

### Vumbers

Derivatives

Calculus c

Vectors

Levi-Civita et. a

ector calculus

trices

istributions

compositions

iagonalizing atrices



### Vumbers

Derivatives

Calculus of variation

Vectors

Levi-Civita et. al.

Vector calculus

ector spaces

.

Matrices

Distributions

compositions

Diagonalizing

# ▶ a<sub>i</sub> denote all components of a rank 1 tensor.

- ▶ aii denote all components of a rank 2 tensor.
- ▶  $a_ib_i = a_1b_1 + a_2b_2 + ... + a_nb_n$ ; repeated indices imply contraction (summation).
- $a_{ij}b_{jk}c_{kl} \equiv \sum_{j=1}^{n}\sum_{k=1}^{n}a_{ij}b_{jk}c_{kl} = t_{il}$
- $\delta_{ii} = n$

The Levi-Civita tensor can be defined as

$$\begin{cases} \epsilon_{xyz} = \epsilon_{yzx} = \epsilon_{zxy} = 1\\ \epsilon_{xzy} = \epsilon_{zyx} = \epsilon_{yxz} = -1\\ \epsilon_{ijk} = 0 \text{ otherwise} \end{cases}$$
 (1)

- $\epsilon_{ijk} = -\epsilon_{jik}$ ; for any pair of indices.
- ▶ In general:  $\epsilon_{i_1,i_2,...,i_n} = (-1)^p$  where p is the number of pairwise permutations.

Numbers

Derivatives

Calculus of variation

ectors/

Levi-Civita et. al.

Vector calculus

гестог зрас

perators

latrices

istributions

compositions

Diagonalizing

- ▶  $\mathbf{a} \times \mathbf{b} = \epsilon_{ijk} \hat{e}_i a_i b_k$ ; vector product.
- ▶  $(\mathbf{a} \times \mathbf{b})_i = \epsilon_{ijk} a_i b_k$ ; vector product.
- $(\mathbf{a} \times \mathbf{b})_z = \epsilon_{zxy} a_x b_y + \epsilon_{zyx} a_y b_x = a_x b_y a_y b_x$
- ▶  $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = (\mathbf{a} \times \mathbf{b})_i c_i = \epsilon_{ijk} a_j b_k c_i$ ; scalar triple product.
- $\epsilon_{ijk} = -\epsilon_{jik}$ ; for any pair of indices.
- $\epsilon_{ijk}\epsilon_{klm} = \delta_{il}\delta_{jm} \delta_{im}\delta_{jl}$ ; contracting k.
- $ightharpoonup \epsilon_{kji}\epsilon_{klm}=-\epsilon_{ijk}\epsilon_{klm};$  etc.
- $ightharpoonup \epsilon_{ijk}\epsilon_{ijm}=2\delta_{km}$ ; contracting i,j.
- $ightharpoonup \epsilon_{ijk}\epsilon_{ijk}=6$ ; contracting i,j,k.

Derivatives

Calculus o variation

/ectors

Levi-Civita et. al.

ector calculus

естог зрас

iatrices

SUIDULIONS

compositions

Diagonalizir natrices

Vector calculus

Consider a vector in Cartesian coordinates which depends on a variable u

$$\mathbf{a}(u) = a_{x}(u)\hat{e}_{x} + a_{y}(u)\hat{e}_{y} + a_{z}(u)\hat{e}_{z}$$
 (1)

the derivative is then

$$\frac{d\mathbf{a}}{du} = \lim_{h \to 0} \frac{\mathbf{a}(u+h) - \mathbf{a}(u)}{h} \tag{2}$$

$$= \frac{da_x}{du}\hat{e}_x + \frac{da_y}{du}\hat{e}_y + \frac{da_z}{du}\hat{e}_z \tag{3}$$

$$\mathbf{r}(t) = x(t)\hat{e}_x + y(t)\hat{e}_y + z(t)\hat{e}_z \tag{4}$$

$$\frac{d\mathbf{r}}{dt}(t) = \frac{dx}{dt}\hat{\mathbf{e}}_x + \frac{dy}{dt}\hat{\mathbf{e}}_y + \frac{dz}{dt}\hat{\mathbf{e}}_z \tag{5}$$

$$\frac{d^2\mathbf{r}}{dt^2}(t) = \frac{d^2x}{dt^2}\hat{e}_x + \frac{d^2y}{dt^2}\hat{e}_y + \frac{d^2z}{dt^2}\hat{e}_z \tag{6}$$

where we have

▶ Position:  $\mathbf{r}(t)$ 

• Velocity:  $\mathbf{v}(t) = \frac{d\mathbf{r}}{dt} = \dot{\mathbf{r}}(t)$ 

• Acceleration:  $\mathbf{a}(t) = \frac{d^2\mathbf{r}}{dt^2} = \ddot{\mathbf{r}}(t)$ 

Numbers

Derivatives

Calculus of

ctors

vi-Civita et. al.

Vector calculus

ector spaces

Acesteca

idelices

.scribations

ecompositions

Diagonalizing natrices

Vector calculus

$$\frac{d}{du}(\phi \mathbf{a}) = \phi \frac{d\mathbf{a}}{du} + \frac{d\phi}{du} \mathbf{a} \tag{7}$$

$$\frac{d}{du}(\phi \mathbf{a}) = \phi \frac{d\mathbf{a}}{du} + \frac{d\phi}{du} \mathbf{a} \tag{7}$$

$$\frac{d}{du}(\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot \frac{d\mathbf{b}}{du} + \frac{d\mathbf{a}}{du} \cdot \mathbf{b} \tag{8}$$

$$\frac{d}{du}(\mathbf{a} \times \mathbf{b}) = \mathbf{a} \times \frac{d\mathbf{b}}{du} + \frac{d\mathbf{a}}{du} \times \mathbf{b}$$
 (9)

$$\frac{d}{du}(\mathbf{a} \cdot \mathbf{b}) = \frac{d}{du}(a_x b_x + a_y b_y + a_z b_z)$$

$$= a_x \frac{db_x}{du} + \frac{da_x}{du} b_x + \dots$$
(10)

$$= a_{x}\frac{db_{x}}{du} + \frac{da_{x}}{du}b_{x} + \dots$$
 (11)

$$= \mathbf{a} \cdot \frac{d\mathbf{b}}{du} + \frac{d\mathbf{a}}{du} \cdot \mathbf{b} \tag{12}$$

Vumbers

Derivative

Calculus of ariation

Vectors

Levi-Civita et. ai

Vector calculus

ector space:

perators

Matrices

Distributions

compositions

Diagonalizing

•  $\phi(x, y, z)$ ; scalar field (f.x. electrostatic potential)

▶ a(x, y, z); vector field (f.x. electric field)

▶  $\nabla \equiv \hat{e}_x \frac{\partial}{\partial x} + \hat{e}_y \frac{\partial}{\partial y} + \hat{e}_z \frac{\partial}{\partial z}$ ; vector operator (nabla).

$$\nabla = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix}; \quad \nabla \phi = \begin{pmatrix} \frac{\partial \phi}{\partial x} \\ \frac{\partial \phi}{\partial y} \\ \frac{\partial \phi}{\partial z} \end{pmatrix}$$
 (13)

Derivative

Calculus of variation

/ectors

Levi-Civita et. al.

Vector calculus

Vector spaces

. . . . . . .

Vlatrices

Distributions

compositions



#### Vumbers

Derivative

alculus of ariation

ectors

Levi-Civita et. ai.

Vector calculus

Vector spaces

Assistant

Matrices

Distributions

compositions

div grad 
$$\nabla \cdot (\nabla \phi) = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2}$$
curl grad  $\nabla \times (\nabla \phi) = 0$ 
grad div  $\nabla(\nabla \cdot \mathbf{a}) = (\frac{\partial^2 \mathbf{a}_x}{\partial x^2} + \frac{\partial^2 \mathbf{a}_y}{\partial x \partial y} + \frac{\partial^2 \mathbf{a}_z}{\partial x \partial z})\hat{\mathbf{e}}_x$ 
 $+ (\frac{\partial^2 \mathbf{a}_y}{\partial y^2} + \frac{\partial^2 \mathbf{a}_z}{\partial y \partial z} + \frac{\partial^2 \mathbf{a}_z}{\partial y \partial x})\hat{\mathbf{e}}_y$ 
 $+ (\frac{\partial^2 \mathbf{a}_z}{\partial z^2} + \frac{\partial^2 \mathbf{a}_z}{\partial z \partial x} + \frac{\partial^2 \mathbf{a}_y}{\partial z \partial y})\hat{\mathbf{e}}_z$ 
div curl  $\nabla \cdot (\nabla \times \mathbf{a}) = 0$ 
curl curl  $\nabla \times (\nabla \times \mathbf{a}) = \nabla(\nabla \cdot \mathbf{a}) - \nabla^2 \mathbf{a}$ 

$$(15)$$

Vumbers

erivative

alculus of ariation

ectors

\_evi-Civita et. al.

Vector calculus

Vector spaces

Operators

Matrices

istributions

$$\nabla(\phi + \psi) = \nabla \phi + \nabla \psi 
\nabla \cdot (\mathbf{a} + \mathbf{b}) = \nabla \cdot \mathbf{a} + \nabla \cdot \mathbf{b} 
\nabla \times (\mathbf{a} + \mathbf{b}) = \nabla \times \mathbf{a} + \nabla \times \mathbf{b} 
\nabla(\phi \psi) = \psi \nabla \phi + \phi \nabla \psi 
\nabla \cdot (\phi \mathbf{a}) = \phi \nabla \cdot \mathbf{a} + \mathbf{a} \cdot \nabla \phi 
\nabla \cdot (\mathbf{a} \times \mathbf{b}) = \mathbf{b} \cdot (\nabla \times \mathbf{a}) - \mathbf{a} \cdot (\nabla \times \mathbf{b})$$
(16)

Consider an integral from point A to point B along the curve C:

- $\rightarrow \int_{\mathcal{C}} \phi d\mathbf{r}$
- $\rightarrow \int_C \mathbf{a} \cdot d\mathbf{r}$
- ►  $\int_C \mathbf{a} \times d\mathbf{r}$

Introduce a parametrization

$$C = \{ \mathbf{r}(u); u_0 \le u \le u_1 \} \tag{17}$$

$$d\mathbf{r} = (dx, dy, dz) = \left(\frac{dx}{du}, \frac{dy}{du}, \frac{dz}{du}\right) du$$
 (18)

$$\int_C \mathbf{a} \cdot d\mathbf{r} = \int_C a_x dx + a_y dy + a_z dz = \tag{19}$$

$$\int_{u_0}^{u_1} \left[ a_x(u) \frac{dx}{du} + a_y(u) \frac{dy}{du} + a_z(u) \frac{dz}{du} \right] du \tag{20}$$

Numbers

rıvatıves

alculus of

ctors

vi-Civita et. al

Vector calculus

ector spaces

perators

latrices

stributions

ecompositions

Diagonalizing natrices



Consider the functions P(x,y) and Q(x,y) that are continuous with continuous partial derivatives in a simply connected region R (no holes). The curve C is the boundary of this region, then

$$\oint_C (P(x,y)dx + Q(x,y)dy) = \int \int_R \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy$$
(21)

Vumbers

erivatives

Calculus of ariation

ectors

evi-Civita et. al.

Vector calculus

ector spaces

Clators

/latrices

Distributions

ecompositions

Consider a surface S in three dimensions. We can define the surface integrals

- $\blacktriangleright \int_{S} \phi \, dS$
- $\rightarrow \int_{S} \phi dS$
- $ightharpoonup \int_{S} \mathbf{a} \cdot d\mathbf{S}$
- ►  $\int_S \mathbf{a} \times d\mathbf{S}$

where  $d\mathbf{S}$  is a vector with the magnitude of the area element and the direction perpendiculer to the surface,

$$d\mathbf{S} = \hat{n}dS \tag{22}$$

Introduce a parametrization

$$S = \{ \mathbf{r}(u, v); u_0 \le u \le u_1; v_0 \le v \le v_1 \}$$
 (23)

Consider the volume V. We can define the volume integrals

- $ightharpoonup \int_V \phi \, dV$
- $ightharpoonup \int_V \mathbf{a} \, dV$

Numbers

erivatives

alculus of

ectors

\_evi-Civita et

Vector calculus

o space

latrices

istributions

compositions

Vector calculus

(24)

(25)

Stokes' theorem:

The divergence theorem:

$$\int_{V} \nabla \cdot \mathbf{a} \, dV = \oint_{S} \mathbf{a} \cdot d\mathbf{S}$$

$$\int_{S} (\nabla \times \mathbf{a}) \cdot d\mathbf{S} = \oint_{C} \mathbf{a} \cdot d\mathbf{r}$$

alculus of ariation

ectors

Vector calculus

oratore

latrices

stributions

\_\_\_\_\_

Diagonalizing

$$\nabla \frac{1}{r} = \left(\hat{e}_{x} \frac{\partial}{\partial x} + \hat{e}_{y} \frac{\partial}{\partial y} + \hat{e}_{z} \frac{\partial}{\partial x}\right) \{x^{2} + y^{2} + z^{2}\}^{-1/2} 
= -\frac{1}{2} \{x^{2} + y^{2} + z^{2}\}^{-3/2} (2x\hat{e}_{x} + 2y\hat{e}_{y} + 2z\hat{e}_{z}) 
= -\frac{r}{r^{3}}$$
(26)

$$\nabla^{2} \frac{1}{r} = -\nabla \cdot \frac{\mathbf{r}}{r^{3}} 
= -\left(\frac{\partial}{\partial x} \frac{x}{r^{3}} + \frac{\partial}{\partial y} \frac{y}{r^{3}} + \frac{\partial}{\partial z} \frac{z}{r^{3}}\right) 
= -\frac{3}{r^{3}} + \frac{3}{2} \left(\frac{2x^{2}}{r^{5}} + \frac{2y^{2}}{r^{5}} + \frac{2z^{2}}{r^{5}}\right) 
= -\frac{3}{r^{3}} + \frac{3}{r^{3}} 
= 0$$
(27)

What about  $\nabla^2 \frac{1}{r}$  at r = 0?

**ESQC 2019** 

POW/2019

What about  $\nabla^2 \frac{1}{r}$  at r=0? Use divergence theorem with sphere of radius R.

$$\int_{V} \nabla \cdot \mathbf{a} \, dV = \oint_{S} \mathbf{a} \cdot d\mathbf{S} \tag{28}$$

$$\int_{V} (\nabla \cdot \nabla \frac{1}{r}) dV = \oint_{S} \nabla \frac{1}{r} \cdot d\mathbf{S}$$

$$= -\oint_{S} \frac{\mathbf{r}}{r^{3}} \cdot \frac{\mathbf{r}}{r} dS$$

$$= -\oint_{S} \frac{\mathbf{r}}{r^{2}} dS$$

$$= -\frac{1}{R^{2}} 4\pi R^{2}$$

$$= -4\pi$$
(29)

so we get

$$\int_{V} \nabla^2 \frac{1}{r} \, dV = -4\pi \tag{30}$$

If this is true then we must have that

$$\nabla^2 \frac{1}{r} = -4\pi \delta(\mathbf{r}) \tag{31}$$

Vector calculus

**Vector space:** A set of objects called vectors,  $(\mathbf{a}, \mathbf{b}, \mathbf{c})$  with an addition and a multiplication with scalars, real or complex,  $(\alpha, \beta)$  subject to the conditions:

- 1.  $\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$ ; commutative addition.
- 2. (a + b) + c = a + (b + c); associative addition.
- 3. a + 0 = a; existence of null vector (identity).
- 4.  $\mathbf{a} + (-\mathbf{a}) = \mathbf{0}$ ; existence of inverse.
- 5.  $(\alpha + \beta)\mathbf{a} = \alpha \mathbf{a} + \beta \mathbf{a}$ ; distributive.
- 6.  $\alpha(\mathbf{a} + \mathbf{b}) = \alpha \mathbf{a} + \alpha \mathbf{b}$ ; distributive.
- 7.  $\alpha(\beta \mathbf{a}) = (\alpha \beta) \mathbf{a}$ ; compatibility.
- 8.  $1 \mathbf{a} = \mathbf{a}$ ; multiplication with one.

Numbers

Derivatives

Calculus o variation

/ectors

Levi-Civita et.

ector carculus

Vector spaces

Astrices

istributions

iagonalizing atrices

- ▶ If  $c_1\mathbf{x_1} + c_2\mathbf{x_2} + \ldots + c_n\mathbf{x_n} = \mathbf{0}$  is fulfilled only if all  $c_i = 0$ , then the vectors are linearly independent.
- ▶ *N* linearly independent vectors **span** a vector space of dimension *N*.
- ▶ If there are N linearly independent vectors but not N+1, the vector space is said to be N-dimensional.
- ► There needs to be *N* linearly independent basis vectors to **span** a *N*-dimensional vector space.



Vumbers

Derivatives

Calculus o variation

ectors

Levi-Civita et. al

vector carcuiu

Vector spaces

latrices

istributions

compositions



Levi-Civita et.

Vector spaces

Antuinna

istributions

ecompositions

Diagonalizing matrices

 Vectors in two or three dimensions such as forces or velocities.

- ▶ The space of ordered pairs of numbers such that
  - $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$  and
- Complex numbers, basically the same as above.
- ▶ The space of all functions  $f(x) = \sum_{k=1}^{\infty} c_k \sin(kx)$  on the interval  $[0, \pi]$ .

## We can add a norm to a vector space, $||\mathbf{u}||$ such that:

- ▶  $||\mathbf{u}|| \ge 0$ , and  $||\mathbf{u}|| = 0$  if and only if  $\mathbf{u} = \mathbf{0}$
- $||\alpha \mathbf{u}|| = |\alpha| ||\mathbf{u}||$
- ▶  $||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||$  (triangle inequality)

A few norms for  $\mathbb{R}^3$ :

- $||\mathbf{u}||_1 = |u_1| + |u_2| + |u_3|$
- $||\mathbf{u}||_{\infty} = \max\{|u_1|, |u_2|, |u_3|\}$
- $||\mathbf{u}||_2 = \sqrt{u_1^2 + u_2^2 + u_3^2}$  (Euclidian norm)
- $||\mathbf{u}||_p = (|u_1|^p + |u_2|^p + |u_3|^p)^{1/p} (\ell^p \text{ norm})$

Vumbers

Derivative

Calculus of variation

/ectors

evi-Civita et. a

ector calculus

Vector spaces

perators

atrices

stributions

compositions

Diagonalizing natrices



- $\blacktriangleright \ \langle \mathbf{u} | \mathbf{v} \rangle = \langle \mathbf{v} | \mathbf{u} \rangle^*$

which implies

For example

- $ightharpoonup \langle \mathbf{u} | \mathbf{v} 
  angle = u_1 v_1 + u_2 v_2 + u_3 v_3 \text{ (for } \mathbb{R}^3 \text{)}$
- $ightharpoonup \langle \mathbf{u} | \mathbf{v} 
  angle = u_1^* v_1 + u_2^* v_2 + u_3^* v_3 \text{ (for } \mathbb{C}^3)$
- $\blacktriangleright \langle \Psi_1 | \Psi_2 \rangle = \int \Psi_1^* \Psi_2 \, dV$  (overlap of wavefunctions)

Numbers

Derivatives

Calculus of Pariation

ectors

\_evi-Civita et. a

Vector spaces

atrices

stributions

compositions

Diagonalizing natrices

### Define a compatible norm as

$$||\mathbf{u}|| = \langle \mathbf{u} | \mathbf{u} \rangle^{1/2}$$

for example

$$||\mathbf{u}|| = \sqrt{u_1u_1 + u_2u_2 + u_3u_3}$$
 (for  $\mathbb{R}^3$ )

$$||\mathbf{u}|| = \sqrt{u_1^* u_1 + u_2^* u_2 + u_3^* u_3}$$
 (for  $\mathbb{C}^3$ )

• 
$$||\Psi|| = \sqrt{\int \Psi^* \Psi \, dV}$$
 (norm of wavefunction)

Define orthogonality as

$$ightharpoonup \langle \mathbf{u} | \mathbf{v} \rangle = 0$$

A set of base vectors that fulfill

is called an orthonormal basis.

Numbers

Derivatives

alculus of ariation

ectors

evi-Civita et. al

vector carcuiu

Vector spaces

Antologo

STUDUTIOUS

ompositions

iagonalizin; natrices

Derivatives

Calculus of variation

/ectors

Levi-Civita et.

Vector calculu

Vector spaces

viatrices

istributions

compositions

Diagonalizin;

► Schwartz's inequality:  $|\langle \mathbf{u} | \mathbf{v} \rangle| \le ||\mathbf{u}|| \, ||\mathbf{v}||$  and equality only if  $\mathbf{u} = \alpha \mathbf{v}$ .

- ▶ The triangle inequality:  $||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||$
- ▶ Bessels inequality:  $||\mathbf{u}||^2 \ge \sum_i |\langle \hat{\mathbf{e}}_i | \mathbf{u} \rangle|^2$  where  $\hat{\mathbf{e}}_i$  is a set of orthonormal basis vectors.
- ► The parallelogram equality:

$$||\textbf{u} + \textbf{v}||^2 + ||\textbf{u} - \textbf{v}||^2 = 2(||\textbf{u}||^2 + ||\textbf{v}||^2).$$

Cauchy sequence: A sequence of vectors,  $\{x_i\}_{i=1}^{\infty}$ , is called a Cauchy sequence if for every small  $\epsilon$  there is a finite integer N such that  $||x_m - x_n|| < \epsilon$  for n > N and m > N.

Complete space: A vector space is complete if any Cauchy sequence converges to an element in the vector space.

Hilbert space: A complete inner product space is called a Hilbert space.

Numbers

Derivative

Calculus of variation

Vectors

\_\_\_\_\_

Vector spaces

Operators

/latrices

istributions

compositions

Derivative

Calculus of variation

/ectors

Vantau nalauluul

Vector spaces

Operators

Matrices

istributions

agonalizing

 $L^2$  space: A vector space with all functions that satisfy  $\int |f|^2\,d\tau < \infty.$ 

Sobolev spaces: A vector space where the function and the derivative up to a given order lie in the  $\mathcal{L}^2$  space.

Calculus o

/ectors

Levi-Civita et. a

Vector spaces

perators

/latrices

Distributions

compositions

iagonalizing

 $ightharpoonup \mathbb{R}^3$ , all points in 3-dimensional space.

- ▶ All infinite sequences of real or complex numbers,  $\{c_i\}_{i=1}^{\infty}$ , such that  $\sum_i |c_i|^2 < \infty$ .
- ▶ All functions f such that  $\int f^* f \, d\tau < \infty$  with the inner product  $\langle f | g \rangle = \int f^* g \, d\tau$ .
- ▶ All functions (orbitals)  $\phi$  that can be formed from a basis set  $\{\chi_i\}_{i=1}^n$ ,  $\phi = \sum_i c_i \chi_i$  with the inner product above.
- ▶ The space of coefficients  $c_i$  above. Note that  $\{\chi_i\}_{i=1}^n$  is normally a nonorthogonal basis so we get the inner product  $\langle c^{(1)}|c^{(2)}\rangle = \sum_{ij} c_i^{(1)} \langle \chi_i|\chi_j\rangle c_j^{(2)} = \sum_{ij} c_i^{(1)} S_{ij} c_j^{(2)}$

Derivatives

Calculus of variation

Vectors

Levi-Civita et.

cotor carcara

Operators

**Natrices** 

etributions

compositions

Diagonalizing natrices

A linear operator  $\hat{A}$  is a mapping that maps an element x in vector space V to an element  $z=\hat{A}x$  in vector space V' in such a way that

$$\hat{A}(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha \hat{A} \mathbf{x} + \beta \hat{A} \mathbf{y}$$
 (1)

where both  $\hat{A}\mathbf{x}$  and  $\hat{A}\mathbf{y}$  are members in V'. V and V' can be the same vector space.

/ectors

/aatau aalaulu

Operators

Matrices

Dietribution

compositions

oiagonalizing natrices

Consider a linear operator  $\hat{A}$  mapping vectors from one Hilbert space  $H_1$  to another Hilbert space  $H_2$ . The adjoint operator  $\hat{A}^{\dagger}$  then maps from  $H_2$  to  $H_1$  in such a way that

$$\langle h_2 | \hat{A} h_1 \rangle_{H_2} = \langle \hat{A}^\dagger h_2 | h_1 \rangle_{H_1} \tag{2}$$

Let  $H_1=H_2=H$  be the Hilbert space of all functions  $\int f^*f\ d au<\infty$  and the inner product  $\langle h_2|h_1\rangle=\int h_2^*h_1\ d au$ 

$$\langle h_2 | \hat{A} h_1 \rangle = \langle \hat{A}^{\dagger} h_2 | h_1 \rangle \tag{3}$$

 $\hat{\mathcal{A}}^{\dagger}$  is called the Hermitian adjoint operator.

erivatives

alculus of ariation

Vectors

\_evi-Civita et. al.

ector carculus

ector spaces

Operators

Matrices

istributions

ecompositions

Diagonalizing

Consider the operator  $\hat{A} = \frac{d}{dx}$  for functions on the interval  $(-\infty, \infty)$  such that  $\int f^* f \, dx < \infty$ .

$$\langle f|\hat{A}g\rangle = \int f^*g'\,dx$$
 (4)

$$= [f^*g]_{-\infty}^{\infty} - \int (f')^*g \, dx$$
 (5)

$$= \langle (-\hat{A})f|g\rangle \tag{6}$$

Thus  $\hat{A}^{\dagger} = -\hat{A}$  is the adjoint operator.

/ectors

ector calculus/

vector spaces

Operators

Matrices

Distributions

agonalizing

. 011,201

Consider the operator  $\hat{A} = i \frac{d}{dx}$  for functions on the interval  $(-\infty, \infty)$  such that  $\int f^* f \, dx < \infty$ .

$$\langle f|\hat{A}g\rangle = \int f^*(ig')\,dx$$
 (7)

$$= i \left[ f^* g \right]_{-\infty}^{\infty} - i \int (f')^* g \, dx \tag{8}$$

$$= \int (if')^* g \, dx \tag{9}$$

$$= \langle \hat{A}f|g\rangle \tag{10}$$

Thus  $\hat{A}^{\dagger} = \hat{A}$  is a self-adjoint or Hermitian operator.

# Consider the operator $\hat{A} = i \frac{d}{dx}$ for functions on the interval

Consider the operator  $A = i \frac{u}{dx}$  for functions on the interval [0,1].

$$\langle f|\hat{A}g\rangle = \int f^*(ig') dx$$
 (11)

$$= i [f^*g]_0^1 - i \int (f')^* g \, dx$$
 (12)

$$= i [f^*g]_0^1 + \int (if')^*g \, dx \tag{13}$$

$$= \langle \hat{A}f|g\rangle + i\{f^*(1)g(1) - f^*(0)g(0)\} \quad (14)$$

Self-adjoint/Hermitian? Depends on boundary conditions.

Vumbers

Derivatives

alculus of

ectors

.evi-Civita et. al

ector spaces

Operators

Matrices

Distributions

composition

Diagonalizing natrices



# Some Hermitian operators

ESQC 2019

POW/2019

Vumbers

Derivatives

alculus of

/ectors

.evi-Civita et. a

Vector calculus

ector spaces

Operators

Matrices

Standle arts

-ompositions

Diagonalizing

With proper boundary conditions

Linear momentum:  $\hat{p}_x = -i\hbar \frac{d}{dx}$ .

Angular momentum:  $\hat{L}^2$ 

Spin:  $\hat{S}^2$ 

Position:  $\hat{x} = x$ 

Potential energy:  $\hat{V} = V(x)$ .

Hamiltonian:  $\hat{H} = \frac{\hat{p} \cdot \hat{p}}{2m} + \hat{V}$ 

Derivative

Calculus of variation

/ectors

evi-Civita et. a

ector calculus

vector space:

perators

Matrices

Distributions

compositions

iagonalizing

A rectangular array of numbers with n rows and m columns, dimensions  $n \times m$ .

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1m} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2m} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3m} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nm} \end{pmatrix}$$
(1

Derivative

Calculus of variation

/ectors

evi-Civita et. al

ector calculus/

rector spaces

-----

Matrices

Distributions

compositions

iagonalizing atrices

A rectangular array with equal number of rows and columns is called a *square* matrix.

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{pmatrix}$$

Addition: A = B + C

$$\begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} + \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{pmatrix} = (3)$$

$$\begin{pmatrix}
a_{11} = b_{11} + c_{11} & a_{12} = b_{12} + c_{12} & a_{13} = b_{13} + c_{13} \\
a_{21} = b_{21} + c_{21} & a_{22} = b_{22} + c_{22} & a_{23} = b_{23} + c_{23} \\
a_{31} = b_{31} + c_{31} & a_{32} = b_{32} + c_{32} & a_{33} = b_{33} + c_{33}
\end{pmatrix}$$
(4)

Numbers

Derivatives

alculus of

ectors

Levi-Civita et. al.

rector careara

perators

Matrices

Distributions

composition

iagonalizin; atrices

- Associative: (A + B) + C = A + (B + C)
- ightharpoonup Commutative: A + B = B + A
- ▶ Matching dimensions: A and B are  $n \times m$ .

Multiplication: A = BC

$$\begin{pmatrix} \dots & \dots & \dots \\ \dots & \dots & \dots \\ b_{31} & b_{32} & b_{33} \end{pmatrix} \begin{pmatrix} \dots & c_{12} & \dots \\ \dots & c_{22} & \dots \\ \dots & c_{32} & \dots \end{pmatrix} = (5)$$

$$\begin{pmatrix} \dots & \dots & \dots \\ \dots & \dots & \dots \\ \dots & b_{31}c_{12} + b_{32}c_{22} + b_{33}c_{32} & \dots \end{pmatrix}$$
 (6)

- $ightharpoonup a_{ij} = \sum_k b_{ik} c_{kj}$
- Associative: (AB)C = A(BC)
- NOT commutative:  $AB \neq BA$ , but may be under certain conditions.
- Matching dimensions: A is  $n \times m$  thus B is  $n \times l$  and C is  $l \times m$ .

lumbers

Dorivotivos

alculus of

ectors

evi-Civita et. al

ector calculus

rector space

erators

Matrices

istributions

compositions

Diagonalizing natrices



Matrices

$$\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \cos \theta x_1 + \sin \theta x_2 \\ -\sin \theta x_1 + \cos \theta x_2 \end{pmatrix}$$

$$\left(\begin{array}{cc} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{array}\right) \left(\begin{array}{cc} \cos\phi & \sin\phi \\ -\sin\phi & \cos\phi \end{array}\right) =$$

$$\left( \begin{array}{cc} \cos\theta\cos\phi - \sin\theta\sin\phi & \cos\theta\sin\phi + \sin\theta\cos\phi \\ -\sin\theta\cos\phi - \cos\theta\sin\phi & -\sin\theta\sin\phi + \cos\theta\cos\phi \end{array} \right) = \begin{array}{c} \frac{\text{Decomposition}}{\text{Diagonalizing matrices}} \\ \frac{\cos\theta\cos\phi}{\cos\phi\cos\phi} & \frac{\cos\theta\sin\phi}{\cos\phi\cos\phi} & \frac{\cos\phi}{\cos\phi} \end{array}$$

$$\left( \begin{array}{cc} \cos(\theta + \phi) & \sin(\theta + \phi) \\ -\sin(\theta + \phi) & \cos(\theta + \phi) \end{array} \right)$$

Derivative

Calculus of variation

Vectors

Levi-Civita et. ai

vector carculus

perators

Matrices

Distributions

compositions

Diagonalizing

# $\lambda \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} \lambda a_{11} & \lambda a_{12} & \lambda a_{13} \\ \lambda a_{21} & \lambda a_{22} & \lambda a_{23} \\ \lambda a_{31} & \lambda a_{32} & \lambda a_{33} \end{pmatrix}$ (7)

- ▶ Distributive:  $\lambda(A+B) = \lambda A + \lambda B$ ,  $(\lambda + \mu)A = \lambda A + \mu A$ .
- Associative:  $(\lambda \mu)A = \lambda(\mu A)$

Matrices

The null matrix: A0 = 0A = 0 and A + 0 = 0 + A = A.

$$0 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \tag{8}$$

The identity matrix: AI = IA = A.

$$I = E = 1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \tag{9}$$

Vumbers

erivatives

Calculus of variation

/ectors

evi-Civita et. al.

ector calculus

vector space

Operators

Matrices

istributions

iagonalizing

Use Taylor expansion as definition for *square* matrices, for example

$$e^A = \sum_k \frac{1}{k!} A^k \tag{10}$$

Transpose is the interchange of rows and columns

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1m} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2m} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3m} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nm} \end{pmatrix}$$
(11)

$$A^{T} = \begin{pmatrix} a_{11} & a_{21} & a_{31} & \cdots & a_{n1} \\ a_{12} & a_{22} & a_{32} & \cdots & a_{n2} \\ a_{13} & a_{23} & a_{33} & \cdots & a_{n2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{1m} & a_{2m} & a_{3m} & \cdots & a_{mn} \end{pmatrix}$$

$$(AB)^T = B^T A^T$$

Numbers

erivatives

alculus of

ectors

evi-Civita et. al.

ector carculus

perators

Matrices

istributions

compositions

Diagonalizing natrices

(12)



$$A^* = \begin{pmatrix} a_{11}^* & a_{12}^* & a_{13}^* & \cdots & a_{1m}^* \\ a_{21}^* & a_{22}^* & a_{23}^* & \cdots & a_{2m}^* \\ a_{31}^* & a_{32}^* & a_{33}^* & \cdots & a_{3m}^* \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1}^* & a_{n2}^* & a_{n3}^* & \cdots & a_{nm}^* \end{pmatrix}$$

Hermitian conjugate

$$A^{\dagger} = (A^{T})^{*} = (A^{*})^{T} = \begin{pmatrix} a_{11}^{*} & a_{21}^{*} & a_{31}^{*} & \cdots & a_{n1}^{*} \\ a_{12}^{*} & a_{22}^{*} & a_{32}^{*} & \cdots & a_{n2}^{*} \\ a_{13}^{*} & a_{23}^{*} & a_{33}^{*} & \cdots & a_{n2}^{*} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{1m}^{*} & a_{2m}^{*} & a_{3m}^{*} & \cdots & a_{mn}^{*} \end{pmatrix}$$

$$(14)$$

lumbers

erivatives

alculus of riation

ectors

(13)

.evi-Civita et. al

lactor chacos

erators

Matrices

D1 - 11 - -1

Decompositio

Diagonalizing natrices

### Vumbers

Derivative

alculus of iriation

ectors

Levi-Civita et. al.

Vector calculus

rector spar

perators

Matrices

Distributions

compositions

oatrices

# $\begin{pmatrix} 1+i & 1+2i \\ 2+i & 2+2i \\ 3+i & 3+2i \end{pmatrix}^{T} = \begin{pmatrix} 1+i & 2+i & 3+i \\ 1+2i & 2+2i & 3+2i \end{pmatrix}$

$$\begin{pmatrix} 1+i & 1+2i \\ 2+i & 2+2i \\ 3+i & 3+2i \end{pmatrix}^{\dagger} = \begin{pmatrix} 1-i & 2-i & 3-i \\ 1-2i & 2-2i & 3-2i \end{pmatrix}$$

lumbers

erivatives

Calculus of variation

/ectors

(15)

Levi-Civita et. a

\_\_\_\_

Operators

Matrices

istributions

iagonalizing

$$|A| = \begin{vmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{vmatrix}$$

$$|A| = \sum_{\sigma} \operatorname{sgn}(\sigma) a_{1,\sigma_1} a_{2,\sigma_2} \dots a_{n,\sigma_n}$$
 (16)

where  $S_n$  is the set of all permutations of the numbers  $\{1,2,\ldots,n\}$  and  $\mathrm{sgn}(\sigma)=-1$  for an odd number of pairwise permutations while  $\mathrm{sgn}(\sigma)=+1$  for an even number of pairwise numbers. For n=2 we have

$$|A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$
 (17)

### Determinants — recursive definition

a<sub>11</sub>

a<sub>21</sub>

a<sub>31</sub>

 $a_{n1}$ 

 $-a_{12}$ 

a<sub>12</sub>

a<sub>22</sub>

a<sub>32</sub>

 $a_{21}$ 

 $a_{31}$ 

 $a_{n1}$ 

*a*<sub>13</sub>

*a*23

**ESQC 2019** 

POW/2019

Matrices

Diagonalizing

. . .

 $a_{nn}$ 

a<sub>22</sub> a<sub>23</sub>  $a_{2n}$  $a_{3n}$ *a*<sub>32</sub> **a**33

remove row 1 and col 1

*a*33  $a_{3n}$ 

remove row 1 and col 2

a<sub>23</sub>

**a**33

 $a_{2n}$ 

 $a_{3n}$ 

 $a_{1n}$ 

 $a_{2n}$ 

 $+a_{13}$ 

remove row 1 and col 3

 $a_{n2}$ 

 $a_{21}$  $a_{22}$ *a*<sub>31</sub>

 $a_{n1}$ 

 $a_{2n}$ 

 $a_{3n}$ 

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶

Numbers

erivatives

alculus of ariation

/ectors

Levi-Civit

vector careara.

nerators

Matrices

istributions

compositions

Diagonalizing

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$$

$$+a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} =$$
 (19)

$$a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} +$$

$$a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31}$$
 (20)

Calculus of variation

Vectors

Levi-Civita et. a

Operators

Matrices

Distributions

Distributions

ecompositions

Diagonalizing

► |A| is the product of the eigenvalues

- $|A^T| = |A|, |A^*| = |A|^*, |A^{\dagger}| = |(A^*)^T| = |A^*| = |A|^*$
- ▶ Interchange of two rows or columns will change the sign.
- $|\lambda A| = \lambda^n |A|$
- ▶ Linear dependence in rows or columns  $\rightarrow$  |A| = 0.
- ▶ Identical rows or columns  $\rightarrow |A| = 0$ .
- ► Add one row to another row does not change the value of the determinant.
- ightharpoonup |AB| = |A||B|

- ▶ The determinant is the product of the eigenvalues.
- ► The trace of a matrix (the sum of the diagonal elements) is the sum of the eigenvalues.

$$egin{array}{c|c} 1 & 1 \\ 1 & 1 \end{array} = 0; \quad \mathrm{tr} \left( \begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right) = 2$$
  $\lambda_1 + \lambda_2 = 2; \quad \lambda_1 \times \lambda_2 = 0; \quad \lambda_{1,2} = 0, 2$ 

$$\Psi_{\mathsf{HF}} = \frac{1}{\sqrt{n!}} \left| \begin{array}{cccc} \phi_1(1) & \phi_2(1) & \phi_3(1) & \cdots & \phi_n(1) \\ \phi_1(2) & \phi_2(2) & \phi_3(2) & \cdots & \phi_n(2) \\ \phi_1(3) & \phi_2(3) & \phi_3(3) & \cdots & \phi_n(3) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \phi_1(n) & \phi_2(n) & \phi_3(n) & \cdots & \phi_n(n) \end{array} \right|$$

Numbers

Derivative:

Calculus o variation

ectors/

Levi-Civita et. al

Matrices

lictributions

ecompositions

Diagonalizing matrices

Matrices

A square matrix may have an inverse such that

$$A^{-1}A = AA^{-1} = I (21)$$

Using the properties of a determinant

$$1 = |I| = |A^{-1}A| = |A||A^{-1}|$$
 (22)

so  $|A| \neq 0$  is a necessary and also sufficient condition for an inverse to exist. If |A| = 0 the matrix is called *singular*.

The rank of a  $n \times m$  matrix is given by the number of linearly independent vectors  $v_i$  in A. It is also given by the number of linearly independent vectors  $w_k$  in A.

$$A = \begin{pmatrix} \uparrow & \uparrow & & \uparrow \\ v_1 & v_2 & \dots & v_m \\ \downarrow & \downarrow & & \downarrow \end{pmatrix}$$
 (23)

$$A = \begin{pmatrix} \leftarrow & w_1 & \rightarrow \\ \leftarrow & w_2 & \rightarrow \\ & \dots & \\ \leftarrow & w_n & \rightarrow \end{pmatrix}$$
 (24)

Numbers

Derivatives

Calculus o

/ectors

evi-Civita et. al

perators

Matrices

istributions

compositions

Diagonalizing

Matrices

A rank 1 matrix.

$$c \ c^{\mathsf{T}} = \left( egin{array}{c} c_1 \\ c_2 \\ c_3 \end{array} 
ight) \left( egin{array}{ccc} c_1 & c_2 & c_3 \end{array} 
ight) = \left( egin{array}{ccc} c_1 c_1 & c_1 c_2 & c_1 c_3 \\ c_2 c_1 & c_2 c_2 & c_2 c_3 \\ c_3 c_1 & c_3 c_2 & c_3 c_3 \end{array} 
ight)$$

A HF density matrix for m occupied orbitals has rank m

$$D = \sum_{i=1}^{m} \eta c_i c_i^{\mathsf{T}}$$

### Diagonal:

$$\begin{pmatrix}
a_{11} & 0 & 0 & 0 \\
0 & a_{22} & 0 & 0 \\
0 & 0 & a_{33} & 0 \\
0 & 0 & 0 & a_{44}
\end{pmatrix}$$

### Tridiagonal

$$\begin{pmatrix}
a_{11} & a_{12} & 0 & 0 \\
a_{21} & a_{22} & a_{23} & 0 \\
0 & a_{32} & a_{33} & a_{34} \\
0 & 0 & a_{43} & a_{44}
\end{pmatrix}$$

lumbers

)erivatives

alculus of ariation

ectors

(25) Levi-Civita et. a

ector space

perators

Matrices

stributions

ompositions

(26) Diagonalizing



# Lower/upper triangular

$$\begin{pmatrix}
a_{11} & 0 & 0 & 0 \\
a_{21} & a_{22} & 0 & 0 \\
a_{31} & a_{32} & a_{33} & 0 \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{pmatrix}$$

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} & a_{23} & a_{24} \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & 0 & a_{44} \end{pmatrix}$$

Numbers

Derivative

Calculus of variation

ectors

evi-Civita et. al

Vector calculus

vector space

perators

Matrices

(27)

istributions

...

.. .

iagonalizing atrices

### Numbers

Derivatives

Calculus of /ariation

Vectors

Levi-Civita e

ector calculu

perators

Matrices

istributions

compositions

Diagonalizing

- Symmetric and antisymmetric:  $S^T = S$  and  $A^T = -A$ . Any matrix X = S + A.
- ► Hermitian and antihermitian:  $H^{\dagger} = H$  and  $A^{\dagger} = -A$ . Any matrix X = H + A.
- ▶ Orthogonal:  $O^{-1} = O^T$
- ▶ Unitary:  $U^{-1} = U^{\dagger}$ .

Consider a new basis

$$\mathbf{e}_{j}' = \sum_{i} S_{ij} \mathbf{e}_{i} \tag{28}$$

How does the representation of vector  $\mathbf{u}$  change?

$$\mathbf{u} = \sum_{i} x_{i} \mathbf{e}_{i} = \sum_{i} x'_{j} \mathbf{e}'_{j} = \sum_{i} \left( \sum_{i} S_{ij} x'_{j} \right) \mathbf{e}_{i}$$

$$x_i = \sum_i S_{ij} x'_j; \quad x = Sx'; \quad x' = S^{-1} x$$

Consider a matrix vector multiplication in original coordinates y = Ax and in transformed coordinates y' = A'x'.

$$y = Ax; \quad Sy' = ASx'; \quad y' = S^{-1}ASx'$$
 (31)

thus

$$A' = S^{-1}AS$$

umbers

erivatives

culus of ation

tors

(29)

(30)

i-Civita et. a

ector spaces

perators

Matrices

istributions

compositions

agonalizing itrices Start with a set of vectors,  $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ 

- 1. Normalize:  $\mathbf{x}_1' = \mathbf{x}_1/||\mathbf{x}_1||$ .
- 2. Orthogonalize:  $\mathbf{x}_2' = \mathbf{x}_2 \langle \mathbf{x}_2 | \mathbf{x}_1' \rangle \mathbf{x}_1'$
- 3. Normalize:  $\mathbf{x}_2'' = \mathbf{x}_2'/||\mathbf{x}_2'||$ .
- 4. Orthogonalize:  $\mathbf{x}_3' = \mathbf{x}_3 \langle \mathbf{x}_3 | \mathbf{x}_1' \rangle \mathbf{x}_1' \langle \mathbf{x}_3 | \mathbf{x}_2'' \rangle \mathbf{x}_2''$
- 5. Normalize:  $\mathbf{x}_3'' = \mathbf{x}_3'/||\mathbf{x}_3'||$ .
- 6. Orthogonalize:  $\mathbf{x}'_4 = \mathbf{x}_4 \dots$
- 7. Etc.



Numbers

Derivative:

Variation

/ectors

Levi-Civita et. a

Operators

Matrices

)istributions

compositions

Diagonalizing



lumbers

erivatives

alculus of

/ectors

evi-Civita et. a

vector calculus

·

perators

Matrices

Distributions

ecompositions

Diagonalizing natrices

 $\mathbf{x}_1 = (1, 1, 1); \mathbf{x}_2 = (2, 0, 1); \mathbf{x}_3 = (3, 1, -1)$ 

1. 
$$\mathbf{x}'_1 = \frac{1}{\sqrt{3}}(1,1,1)$$

2. 
$$\mathbf{x}_2' = (2,0,1) - \frac{1}{3}(2 \cdot 1 + 0 \cdot 1 + 1 \cdot 1)(1,1,1)$$
  
=  $(1,-1,0)$ 

3. 
$$\mathbf{x}_2'' = \frac{1}{\sqrt{2}}(1, -1, 0)$$

4. 
$$\mathbf{x}_3' = (3,1,-1) - \frac{1}{3}(3 \cdot 1 + 1 \cdot 1 + (-1) \cdot 1)(1,1,1) - \frac{1}{2}(3 \cdot 1 + 1 \cdot (-1) + (-1) \cdot 0)(1,-1,0) = (1,1,-2)$$

5. 
$$\mathbf{x}_3'' = \frac{1}{\sqrt{6}}(1,1,-2)$$

- $\phi(x)$  is *smooth* (infinitely differentiable)
- $\phi(x)$  has *compact support* (identically zero outside a finite intervall)

Let us define a **distribution** f(x) by the values of the functional

$$\langle f, \phi \rangle = \int_{-\infty}^{\infty} f(x)\phi(x) dx$$
 (1)

for all possible test functions  $\phi(x)$ .

Vumbers

Derivatives

Calculus of variation

ectors

Levi-Civita et.

ector calculus

.

Distributions

ecompositions

Diagonalizing natrices The Dirac  $\delta$  function can be defined as

$$\langle \delta, \phi \rangle = \int_{-\infty}^{\infty} \delta(x) \phi(x) \, dx = \phi(0)$$
 (2)

for any test function  $\phi(x)$ . We can shift the origin of the test function

$$\phi(a) = \int_{-\infty}^{\infty} \delta(x)\phi(x+a) dx = \int_{-\infty}^{\infty} \delta(z-a)\phi(z) dz$$
 (3)

If we let  $\phi_t(x) = 1$  on the interval [-t, t] we get

$$\int_{-\infty}^{\infty} \delta(x) dx = \lim_{t \to \infty} \int_{-\infty}^{\infty} \delta(x) \phi_t(x) dx = 1$$
 (4)

Only defined under an integral sign.

lumbers

Derivatives

Calculus of variation

ectors

Levi-Civita et.

ector carculus

latrices

Distributions

ecompositions

iagonalizing atrices

lumbers

erivatives

alculus of ariation

ectors

Levi-Civita et. al

Vector calculus

lakelaka.

Distributions

cribations

compositions

Diagonalizin matrices

Let us define the Heaviside step function as

$$H(x) = \begin{cases} 0 & x < 0 \\ \frac{1}{2} & x = 0 \\ 1 & x > 0 \end{cases}$$
 (5)

or in the form of a distribution

$$\langle H, \phi \rangle = \int_{-\infty}^{\infty} H(x)\phi(x) dx = \int_{0}^{\infty} \phi(x) dx$$
 (6)

lumbers

erivatives

lculus of riation

ectors

Levi-Civita et. al.

/ector spaces

. . . .

Matrices

Distributions

compositions

Diagonalizing

 $\langle f', \phi \rangle = \int_{-\infty}^{\infty} f'(x)\phi(x) dx$  (7)

 $= [f(x)\phi(x)]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} f(x)\phi'(x) dx \qquad (8)$ 

 $= -\int_{-\infty}^{\infty} f(x)\phi'(x) dx$  (9)

 $= -\langle f, \phi' \rangle \tag{10}$ 

Let us take the derivative of H(x),

$$\langle H', \phi \rangle = \int_{-\infty}^{\infty} H'(x)\phi(x) dx$$
 (11)

$$= -\int_{-\infty}^{\infty} H(x)\phi'(x) dx$$
 (12)

$$= -\int_0^\infty \phi'(x) \, dx \tag{13}$$

$$= -\left[\phi(x)\right]_0^\infty \tag{14}$$

$$= -\{\phi(\infty) - \phi(0)\}$$
 (15)

$$= \phi(0) \tag{16}$$

thus 
$$H'(x) = \delta(x)$$
.

Distributions



Numbers

)erivatives

Calculus of variation

/ectors

.evi-Civita et. al

Vector calculus

госог эра

Distributions

ecompositions

Diagonalizing natrices

Fourier back transform with equal amplitudes for all frequencies

$$\delta(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{f}(\omega) e^{i\omega x} d\omega; \quad \tilde{f}(\omega) = 1$$
 (17)

Electrostatics for a point charge

$$\nabla^2 \frac{1}{r} = -4\pi \delta(\mathbf{r}) = -4\pi \delta(x) \delta(y) \delta(z)$$
 (18)

$$A = LU \tag{1}$$

where L is a lower triangular matrix and U is an upper triangular matrix.

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{pmatrix}$$
Vector spaces perators
$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{pmatrix}$$
Addrices
$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{pmatrix}$$
Distributions
Decomposition

$$= \begin{pmatrix} u_{11} & u_{12} & u_{13} \\ l_{21}u_{11} & l_{21}u_{12} + u_{22} & l_{21}u_{13} + u_{23} \\ l_{31}u_{11} & l_{31}u_{12} + l_{32}u_{22} & l_{31}u_{13} + l_{32}u_{23} + u_{33} \end{pmatrix}$$
(3

Decompositions

(4)

### Decompositions

Now it is simpler to solve a linear equation system

$$Ax = c; \quad LUx = c; \quad Lb = c; \quad Ux = b$$

$$\begin{pmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{21} & l_{22} & 1 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ l_{22} & l_{23} \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$$

$$\begin{pmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

Vumbers

Derivatives

Calculus of variation

/ectors

Levi-Civita et. a

Vector calculus

perators

latrices

istributions

Decompositions

Diagonalizing matrices

Assume that A is symmetric and positive semi-definite matrix, then

$$A = LL^{\dagger} \tag{5}$$

Can be used for data reduction:

- 1.  $A_1 = I^{(1)}(I^{(1)})^{\dagger}$ ;  $A = A_1 + R_1$ . Is  $R_1$  small? Then stop.
- 2.  $A_2 = A_1 + I^{(2)}(I^{(2)})^{\dagger}$ ;  $A = A_2 + R_2$ . Is  $R_2$  small? Then stop.
- 3. ...

# Cholesky decomposition

**ESQC 2019** POW/2019

Decompositions

(6)

(7)

$$LL^{\dagger} = \begin{pmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{pmatrix} \begin{pmatrix} l_{11}^{\dagger} & l_{12}^{\dagger} & l_{13}^{\dagger} \\ 0 & l_{22}^{\dagger} & l_{23}^{\dagger} \\ 0 & 0 & l_{33}^{\dagger} \end{pmatrix}$$

$$l_{11}l_{12}^{\dagger}$$

$$A_{1} = \begin{pmatrix} l_{11}l_{11}^{\dagger} & l_{11}l_{12}^{\dagger} & l_{11}l_{13}^{\dagger} \\ l_{21}l_{11}^{\dagger} & l_{21}l_{12}^{\dagger} & l_{21}l_{13}^{\dagger} \\ l_{31}l_{11}^{\dagger} & l_{31}l_{12}^{\dagger} & l_{31}l_{12}^{\dagger} \end{pmatrix}$$

$$l_{2}$$
  $l_{21}l_{13}^{\dagger}$   $l_{31}l_{13}^{\dagger}$ 

$$l_{11}l_{12}^{\dagger}$$

$$A_{2} = \begin{pmatrix} I_{11}I_{11}^{\dagger} & I_{11}I_{12}^{\dagger} & I_{11}I_{13}^{\dagger} \\ I_{21}I_{11}^{\dagger} & I_{21}I_{12}^{\dagger} + I_{22}I_{22}^{\dagger} & I_{21}I_{13}^{\dagger} + I_{22}I_{23}^{\dagger} \\ I_{31}I_{11}^{\dagger} & I_{31}I_{12}^{\dagger} + I_{32}I_{22}^{\dagger} & I_{31}I_{13}^{\dagger} + I_{32}I_{23}^{\dagger} \end{pmatrix}$$

$$l_{21}l_{13}^{\dagger}$$
 $l_{31}l_{13}^{\dagger}$ 

$$I_{31}I_{13}^{\dagger} + I_{3}$$

$$l_{21}l_{1}^{\dagger}$$

$$A_{3} = \begin{pmatrix} l_{11}l_{11}^{\dagger} & l_{11}l_{12}^{\dagger} & l_{11}l_{13}^{\dagger} \\ l_{21}l_{11}^{\dagger} & l_{21}l_{12}^{\dagger} + l_{22}l_{22}^{\dagger} & l_{21}l_{13}^{\dagger} + l_{22}l_{23}^{\dagger} \\ l_{31}l_{11}^{\dagger} & l_{31}l_{12}^{\dagger} + l_{32}l_{22}^{\dagger} & l_{31}l_{13}^{\dagger} + l_{32}l_{23}^{\dagger} + l_{33}l_{33}^{\dagger} \end{pmatrix}$$

$$A = USV^{\dagger} \tag{10}$$

where

- ▶ U has dimension  $m \times m$  and is unitary
- ▶ S has dimension  $m \times n$  and is diagonal, that is  $s_{ij} = 0$  unless i = j.
- ▶ V has dimension  $n \times n$  and is *unitary*

Now form the two Hermitian matrices

$$A^{\dagger}A = VS^{\dagger}U^{\dagger}USV^{\dagger} = VS^{\dagger}SV^{\dagger}$$

$$AA^{\dagger} = USV^{\dagger}VS^{\dagger}U^{\dagger} = USS^{\dagger}U^{\dagger}$$
(11)

where  $S^{\dagger}S$  and  $SS^{\dagger}$  are diagonal matrices of dimensions  $n \times n$  and  $m \times m$  respectively.

Numbers

Derivatives

alculus of riation

ectors

Levi-Civita et.

Vector calculu

естог зрасе.

\_\_\_\_

LITEULIONS

Decompositions

Diagonalizing matrices Rewrite

$$A^{\dagger}A = VS^{\dagger}SV^{\dagger}$$

$$AA^{\dagger} = USS^{\dagger}U^{\dagger}$$
(12)

into

$$V^{\dagger}A^{\dagger}AV = S^{\dagger}S$$

$$U^{\dagger}AA^{\dagger}U = SS^{\dagger}$$
(13)

which is a diagonalization of  $AA^{\dagger}$  and  $A^{\dagger}A$ . The smaller of  $SS^{\dagger}$  and  $S^{\dagger}S$  have eigenvalues  $\lambda_i$ . Thus S is diagonal with  $s_{ii}^2 = \lambda_i$ . We can now write A as

$$A = \sum_{i} s_i u^{(i)} (v^{(i)})^{\dagger} \tag{14}$$

If we discard vectors for small eigenvalues we get a data reduction.

umbers

)erivatives

alculus of ariation

ctors

vi-Civita et. al.

ector calculus/

ector space

atrices

atrices

Decompositions

composition

Diagonalizing natrices

### Example — SVD

**ESQC 2019** POW/2019

Start with matrix A

$$A = \left(\begin{array}{cc} 0 & -1 \\ 1 & 1 \\ -1 & 0 \end{array}\right)$$

(15)

and form

$$A^{\dagger}A = \left( egin{array}{ccc} 0 & 1 & -1 \ -1 & 1 & 0 \end{array} 
ight) \left( egin{array}{ccc} 0 & -1 \ 1 & 1 \ -1 & 0 \end{array} 
ight) = \left( egin{array}{ccc} 2 & 1 \ 1 & 2 \end{array} 
ight)$$

Decompositions

and

 $AA^{\dagger} = \left( egin{array}{ccc} 0 & -1 \ 1 & 1 \ -1 & 0 \end{array} 
ight) \left( egin{array}{ccc} 0 & 1 & -1 \ -1 & 1 & 0 \end{array} 
ight) = \left( egin{array}{ccc} 1 & -1 & 0 \ -1 & 2 & -1 \ 0 & -1 & 1 \end{array} 
ight)$ 

(16)

Diagonalize  $A^{\dagger}A$ 

$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \lambda_1 \times \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 3 \times \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 (18)

$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \lambda_2 \times \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 1 \times \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
(19)

so

$$V = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \tag{20}$$

and 
$$S_{11}=\sqrt{3}$$
 and  $S_{22}=1$ 

Numbers

Danimations

alculus of ariation

ectors

evi-Civita et. al.

Vector calculus

/ector spaces

/latrices

istributions

Decompositions

Diagonalizing matrices

### Diagonalize $AA^{\dagger}$

$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix} = 3 \times \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}$$
 (21)

$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = 1 \times \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$
 (22)

$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 0 \times \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 (23)

### lumbers

erivatives

alculus of riation

ectors

evi-Civita et. al

erators

1atrices

tributions

Decompositions

Diagonalizing matrices Finally

$$A=USV^{\dagger}$$

(24)

(25)

(26)

where

$$U = \begin{pmatrix} -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \end{pmatrix}$$

Decompositions

$$S = \begin{pmatrix} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$V = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$

$$(26)$$

Vumbers

Derivatives

Calculus of variation

/ectors

\_evi-Civita et. al.

vector carculus

Astrices

stributions

ecompositions

Diagonalizing matrices

Any Hermitian matrix, H, can be diagonalized by some unitary matrix, U

$$U^{\dagger}HU = D; \quad D_{ii} = \delta_{ii}\lambda_i \tag{1}$$

For the real symmetric case it can be diagonalized by an orthogonal matrix.

$$O^T HO = D; \quad D_{ij} = \delta_{ij} \lambda_i$$
 (2)

where  $\lambda_i$  are so called eigenvalues of H.

Diagonalizing matrices

Multiply both sides by U,

$$U^{\dagger}HU = D \rightarrow HU = UD$$
 (3)

For each column in U,  $u^{(k)}$ , we have

$$Hu^{(k)} = u^{(k)}\lambda_k \tag{4}$$

where  $u^{(k)}$  is an eigenvector with corresponding eigenvalue  $\lambda_k$ .

## How to diagonalize

ESQC 2019

POW/2019

Numbers

Derivatives

Calculus of variation

Vectors

\_evi-Civita et. a

Vector calculus

perators

Matrices

istributions

compositions

Diagonalizing matrices

We need to find U or Q.

- ▶ We need all (most) eigenvalues and eigenvectors
  - ▶ Jacobi, Givens, Householder, QR, MRRR, ...
- We need a few eigenvalues and eigenvectors
  - Lanzcos, Davidson, . . .

(unknown) eigenvectors

/ectors

evi-Civita et. al

rector carculus

Matrices

. . . .

istributions

compositions

Diagonalizing matrices

Consider a trial vector x that is assumed to be an approximation to one eigenvector. Expand this in the

$$x = c_1 u^{(1)} + c_2 u^{(2)} + \dots + c_n u^{(n)}$$
(5)

Multiply this vector by H m times to get

$$x' = c_1 \lambda_1^m u^{(1)} + c_2 \lambda_2^m u^{(2)} + \ldots + c_n \lambda_n^m u^{(n)}$$
 (6)

which will eventually be dominated one eigenvalue. This method is mostly of theoretical interest.

Loop through all offdiagonal element,  $H_{ij}$ , and perform a  $2 \times 2$  rotation such that  $H_{ij} = H_{ji} = 0$ . For example i = 2 and j = 3.

$$\begin{pmatrix}
x & a'_{12} & a'_{13} & x & x \\
a_{21} & a'_{22} & a'_{23} = 0 & a'_{24} & a'_{25} \\
a_{31} & a'_{32} = 0 & a'_{33} & a'_{34} & a'_{35} \\
x & a'_{42} & a'_{43} & x & x \\
x & a'_{52} & a'_{53} & x & x
\end{pmatrix}$$
(7)

The square sum of the offdiagonal elements is reduced by  $2H_{ij}^2$ . Very robust method, a bit slow, suitable for smallish matrices.

Numbers

Derivatives

Calculus o

ectors

evi-Civita et. al

ector calculus

ector spaces

/latrices

tributions

compositions

Diagonalizing matrices

Here we reduce the matrix to a tridiagonal form: perform  $2 \times 2$  rotations with (i, j) = (2, 3) in order to make  $a_{13} = 0$ .

$$\begin{pmatrix} x & a'_{12} & a'_{13} = 0 & x & x \\ a_{21} & a'_{22} & a'_{23} & a'_{24} & a'_{25} \\ a_{31} = 0 & a'_{32} & a'_{33} & a'_{34} & a'_{35} \\ x & a'_{42} & a'_{43} & x & x \\ x & a'_{52} & a'_{53} & x & x \end{pmatrix}$$
(8)

followed by rotating (2,4) to make  $a_{14} = 0$ , etc. Followed by some method to find eigenvalues and eigenvectors, such as MRRR.

Diagonalizing matrices

Consider a normalized trial vector x that is assumed to be an approximation to one eigenvector. Expand this in the (unknown) eigenvectors

$$x = c_1 u^{(1)} + c_2 u^{(2)} + \ldots + c_n u^{(n)}$$
(9)

Find an approximate eigenvalue by  $\lambda = x^\dagger H x$ . Solve the equation

$$(H - \lambda I)x' = x; \quad x' = (H - \lambda I)^{-1}x$$
 (10)

$$x' = c_1(\lambda_1 - \lambda)^{-1} u^{(1)} + c_2(\lambda_2 - \lambda)^{-1} u^{(2)} + \ldots + c_n(\lambda_n - \lambda)^{-1} u^{(\frac{\text{Diagonalizing}}{\text{platrices}})}$$

and the procedure is repeated until convergence. The procedure has cubic convergence.

Numbers

erivatives

alculus of ariation

ctors

Levi-Civita et. ai

ector calculus/

itrices

compositions



(11)

A Krylov subspace is defined as

 $K_n(A, b) = \operatorname{span} \{ \mathbf{b}, A\mathbf{b}, A^2\mathbf{b}, \dots, A^{n-1}\mathbf{b} \}$  where **b** is a real vector and A is a real matrix.

Used to solve  $A\mathbf{x} = \mathbf{y}$ . Assume  $\mathbf{b} \approx \mathbf{x}$ , make the ansatz

$$x \approx \sum_{m=0}^{n-1} c_m A^m \mathbf{b} = P(A) \mathbf{b}$$
 (12)

Minimize the residual

$$||\mathbf{r}||^2 = ||\mathbf{y} - \sum_{m} c_m A^m \mathbf{b}||^2$$
(13)

$$= ||\mathbf{y}||^2 - 2\sum_{m} c_m \langle \mathbf{y}|A^m \mathbf{b}\rangle + \sum_{mk} c_m c_k \langle A^m \mathbf{b}|A^k \mathbf{b}\rangle \quad (14)$$

$$\frac{d||\mathbf{r}||^2}{dc_m} = 0 \to \sum_{k} \langle A^m \mathbf{b} | A^k \mathbf{b} \rangle c_k = \langle \mathbf{y} | A^m \mathbf{b} \rangle \tag{15}$$

Orthonormalizing the vectors in  $K_n(A, b)$  gives, in general, better numerical stability.

Numbers

Derivatives

Calculus of ariation

ectors

evi-Civita et. a

ctor spaces

.....

atrices

ecompositions

Diagonalizing

Diagonalizing matrices

# Transform Hermitian $n \times n$ matrix A to tridiagonal $m \times m$ matrix T.

- 1. Start with a vector  $||\mathbf{x}_1|| = 1$
- 2. Initialize

$$2.1 \, \mathbf{s}_1 = A\mathbf{x}_1$$

2.2 
$$\alpha_1 = \mathbf{s}_1^{\dagger} \mathbf{x}_1$$

2.3 
$$\mathbf{w}_1 = \mathbf{s}_1 - \alpha_1 \mathbf{x}_1$$

3. For 
$$i = 2, ..., m$$

3.1 
$$\beta_i = ||\mathbf{w}_{i-1}||$$

3.2 If 
$$\beta_i \neq 0$$
 Then  $\mathbf{x}_i = \mathbf{w}_{i-1}/\beta_i$   
Else panic/stop/pick random orthogonal vector

3.3  $\mathbf{s}_i = A\mathbf{x}_i$ 

3.4 
$$\alpha_i = \mathbf{s}_i^{\dagger} \mathbf{x}_i$$

3.5 
$$\mathbf{w}_i = \mathbf{s}_i - \alpha_i \mathbf{x}_i - \beta_i \mathbf{x}_{i-1}$$

We do not need A explicitly!

Derivatives

Calculus o variation

/ectors

evi-Civita et. al

ector calculus

secor space

. .

atrices

Distributions

compositions

Diagonalizing matrices

such that  $T = V^{\dagger}AV$ 

/ectors

Levi-Civita et. al.

Vector calculus

Matrices

)ietributione

ecompositions

Diagonalizing matrices

(17)

We get the unitary matrix V and the tridiagonal matrix T

$$V = \begin{pmatrix} \uparrow & \uparrow & & \uparrow \\ \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_m \\ | & | & | & | \end{pmatrix}$$
 (16)

$$T = \begin{pmatrix} \alpha_1 & \beta_2 & 0 & \dots \\ \beta_2 & \alpha_2 & \beta_3 & \dots \\ 0 & \beta_3 & \alpha_4 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Diagonalizing matrices

Davidson matrix diagonalization for one root.

- 1. Guess a start vector such that  $||\mathbf{c}_1|| = 1$
- 2. For i = 1, ...
  - 2.1 Orthonormalize  $\mathbf{c}_i$  against  $\mathbf{c}_i$ ,  $i = 1, \ldots, i 1$ .
  - 2.2 Compute  $\mathbf{s}_i = H\mathbf{c}_i$  ( $\sigma$  vector)
  - 2.3 Form  $\hat{H}_{ii} = \langle \mathbf{s}_i | \mathbf{c}_i \rangle$  (only last row)
  - 2.4 Diagonalize  $\tilde{H}$ ;  $\tilde{H}\mathbf{v}^{(k)} = \lambda_k \mathbf{v}^{(k)}$ .

  - 2.5 Select root:  $\mathbf{v}^{(m)}$  and  $\lambda_m$ 2.6 Form residual  $\mathbf{r}_i = \sum_i v_i^{(m)} (\mathbf{s}_j \lambda_m \mathbf{c}_j)$
  - 2.7  $\mathbf{c}_{i+1} = (H^{(0)} \lambda)^{-1} \mathbf{r}_i$

Diagonalizing matrices

- Use several roots simultaneously. Davidson-Liu method.
- ▶ Use a better preconditioner, do full diagonalization of a submatrix of H.
- Skip normalization.
- ▶ Replace preconditioner  $(H^{(0)} \lambda)^{-1}$ **r** with  $c_1(H^{(0)}-\lambda)^{-1}\mathbf{r}+c_2(H^{(0)}-\lambda)^{-1}\mathbf{c}$
- Inverse iteration